Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Front Plant Sci ; 14: 1211040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426956

RESUMEN

Sesame is one of the most important oilseed crops and attracts significant attention because of its huge nutritional capacity. However, the molecular mechanisms underlying oil accumulation in sesame remains poorly understood. In this study, lipidomic and transcriptomic analyses in different stages of sesame seed (Luzhi No.1, seed oil content 56%) development were performed to gain insight into the regulatory mechanisms that govern differences in lipid composition, content, biosynthesis, and transport. In total, 481 lipids, including fatty acids (FAs, 38 species), triacylglycerol (TAG, 127 species), ceramide (33 species), phosphatidic acid (20 species), and diacylglycerol (17 species), were detected in developing sesame seed using gas and liquid chromatography-mass spectrometry. Most FAs and other lipids accumulated 21-33 days after flowering. RNA-sequence profiling in developing seed highlighted the enhanced expression of genes involved in the biosynthesis and transport of FAs, TAGs, and membrane lipids, which was similar to that seen during lipid accumulation. Through the differential expression analysis of genes involved in lipid biosynthesis and metabolism during seed development, several candidate genes were found to affect the oil content and FA composition of sesame seed, including ACCase, FAD2, DGAT, G3PDH, PEPCase, WRI1 and WRI1-like genes. Our study reveals the patterns of lipid accumulation and biosynthesis-related gene expression and lays an important foundation for the further exploration of sesame seed lipid biosynthesis and accumulation.

3.
Dalton Trans ; 50(35): 12197-12207, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34382984

RESUMEN

Developing metal-organic framework (MOF)-based fluorescent probes for efficient detection and discrimination of polluting ions in groundwater is vital for environmental protection and human health. In this paper, we prepared two luminescence-active transition MOFs, namely, Zn-MOF and Cd-MOF, and conducted sensing experiments. The results show that they both exhibit multiple-target detection for Fe3+, Pb2+ and Cr(VI) with high sensitivity, good anti-interference ability and good recyclability even with different frameworks. In addition, Eu3+-incorporated samples, Eu3+@MOFs, with dual-emission have been fabricated via efficient encapsulation of Eu3+ ions into the MOF host. As expected, Eu3+@MOF hybrids also act as multi-target and self-calibrated probes to selectively detect Fe3+ and Cr(VI) ions. However, the quenching efficiencies of the original MOFs towards Fe3+ are higher than those of Eu3+@MOFs. Thus, we could differentiate Fe3+, Pb2+ and Cr(VI) ions by comparing the changes of fluorescence emission between Eu3+@MOFs and the original MOFs. The recognition mechanism may be attributed to the competitive energy absorption between MOFs or Eu3+@MOFs and the analytes.

4.
Plant Sci ; 181(1): 65-75, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21600399

RESUMEN

DArT and SSR markers were used to saturate and improve a previous genetic map of RILs derived from the cross Chuan35050 × Shannong483. The new map comprised 719 loci, 561 of which were located on specific chromosomes, giving a total map length of 4008.4 cM; the rest 158 loci were mapped to the most likely intervals. The average chromosome length was 190.9 cM and the marker density was 7.15 cM per marker interval. Among the 719 loci, the majority of marker loci were DArTs (361); the rest included 170 SSRs, 100 EST-SSRs, and 88 other molecular and biochemical loci. QTL mapping for fatty acid content in wheat grain was conducted in this study. Forty QTLs were detected in different environments, with single QTL explaining 3.6-58.1% of the phenotypic variations. These QTLs were distributed on 16 chromosomes. Twenty-two QTLs showed positive additive effects, with Chuan35050 increasing the QTL effects, whereas 18 QTLs were negative with increasing effects from Shannong483. Six sets of co-located QTLs for different traits occurred on chromosomes 1B, 1D, 2D, 5D, and 6B.


Asunto(s)
Mapeo Cromosómico , Ácidos Grasos/análisis , Sitios de Carácter Cuantitativo , Semillas/química , Triticum/genética , Cromosomas de las Plantas/genética , Etiquetas de Secuencia Expresada , Ligamiento Genético , Marcadores Genéticos , Genotipo , Repeticiones de Microsatélite , Hojas de la Planta/genética , Semillas/genética , Triticum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...