Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(31): 14301-14307, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39041592

RESUMEN

This study focuses on incorporating NaNbO3 (NN) into the Ba0.85Ca0.15Zr0.9Ti0.1O3 (BCZT) lattice to form (1 - x)BCZT-xNN ceramics. Although antiferroelectricity was not observed, an observed domain-movement-diminishment behavior with increasing NN dopant induced the formation of high polarization walls (HPWs) between adjacent C-phases. The 0.90BCZT-0.10NN composition exhibited superior polarization compared to most BCZT-based ferroelectrics, as validated by mathematical derivation. Integration of these findings revealed a Wrec of 3.86 J/cm3 at 360 kV/cm, with a high Wrec/Eb ratio defining energy consumption efficiency in dielectric capacitors. This work introduces a novel approach to fabricating low-consumption dielectric capacitors. Additionally, a significantly high Wrec of 5.36 J/cm3 was achieved with an NN dopant concentration of 0.30.

2.
Mater Horiz ; 11(14): 3330-3344, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682657

RESUMEN

Due to dielectric capacitors' already-obtained fast charge-discharge speed, research has been focused on improving their Wrec. Increasing the polarization and enhancing the voltage endurance are efficient ways to reach higher Wrec, however simultaneous modification still seems a paradox. For example, in the ferroelectric-to-relaxor ferroelectric (FE-to-RFE) phase transition strategy, which has been widely used in the latest decade, electric breakdown strength (Eb) and energy storage efficiency (η) always increase, while at the same time, the maximum polarization (Pmax) inevitably decreases. The solution to this problem can be obtained from another degree of freedom, like defect engineering. By incorporating Bi(Zn2/3Ta1/3)O3 (BZT) into the Ba0.15Ca0.85Zr0.1Ti0.9O3 (BCZT) lattice to form (1 - x)Ba0.15Ca0.85Zr0.1Ti0.9O3-xBi(Zn2/3Ta1/3)O3 (BCZT-xBZT) solid-solution ceramics, in this work, ultrahigh ferroelectric polarization was achieved in BCZT-0.15BZT, which is caused by the polarization double-enhancement, comprising the contribution of interfacial and dipole polarization. In addition, due to the electron compensation, a Schottky contact formed at the interface between the electrode and the ceramic, which in the meantime, enhanced its Eb. A Wrec of 8.03 J cm-3, which is the highest among the BCZT-based ceramics reported so far, with an extremely low energy consumption, was finally achieved. BCZT-0.15BZT also has relatively good polarization fatigue after long-term use, good energy storage frequency stability and thermal stability, as well as excellent discharge properties.

3.
J Colloid Interface Sci ; 644: 157-166, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105039

RESUMEN

Solar interfacial steam power generation is a prospective method for seawater desalination. In this work, a salt-blocking three-dimensional (3D) Janus evaporator with a superhydrophobic to superhydrophilic gradient was fabricated by spraying a composite dispersion of multi-walled carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) onto the top side of a polyurethane (PU) foam and polyvinyl alcohol (PVA) solution onto the bottom side. The CNTs/PDMS composite dispersion with nanostructured CNTs and low surface energy PDMS combined with the porous structure of the PU foam rendered the top side superhydrophobic. Therefore, a layer suitable for photothermal conversion was obtained. The hydrophilic PVA combined with the porous structure of the foam rendered the bottom side superhydrophilic, facilitating water absorption and transportation. The asymmetric wettability gradient of the CNTs/PDMS-PU-PVA as a 3D evaporator caused the evaporation rate and transportation speed of water to reach a balance, and the salt was quickly dissolved at the superhydrophilic interface. This 3D salt-resistant Janus evaporator achieved an evaporation rate of 2.26 kg m-2 h-1 under 1 kW m-2 illumination.

4.
ACS Appl Mater Interfaces ; 15(3): 4612-4622, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36631727

RESUMEN

The mechanical durability of superhydrophobic surfaces is of significance for their practical applications. However, few reports about superhydrophobic coating on certain substrates took into consideration both the mechanical stability of the superhydrophobic coating and adhesion stability between the coating and the substrate. Herein, we put forward a facile and efficient strategy to construct robust superhydrophobic coatings by simply spray-coating a composite suspension of SiO2 nanoparticles, polydimethylsiloxane (PDMS), and epoxy resin (EP) on substrates pretreated with an EP base-coating. The as-obtained coating exhibited excellent superhydrophobicity with water contact angle of 163° and sliding angle of 3.5°, which could endure UV irradiation of 180 h, immersion in acidic or basic solutions for 168 h, and outdoor exposure for over 30 days. Notably, the coating surface retained superhydrophobicity after being successively impacted with faucet water for 1 h, impinged with 360 g sand grains, and abraded with sandpaper of 120 grid under a load of 500 g for 5 m distance. The outstanding mechanical stability was mainly attributed to the cross-linking of EP and the elastic nature of PDMS which ensured strong cohesion inside the whole coating and to the substrate. Additionally, the coating showed self-healing capacity against O2 plasma etching. The method is simple with the materials commercially available and is expected to be widely applied in outdoor applications.

5.
ACS Omega ; 7(49): 45381-45385, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530281

RESUMEN

A microwave sintering procedure has been developed to achieve high quality multiferroic composites of (1 - x)BaTiO3-xBaFe12O19 (x = 0.05, 0.10, 0.15, and 0.20). X-ray diffraction, scanning electron microscopy, and impedance spectra indicate that BaFe12O19 particles are isolated homogeneously by BaTiO3 particles. In a 1.8 T magnetic field, a large room temperature magnetodielectric effect over 4.3% is observed in the 0.8BaTiO3-0.2BaFe12O19 composite. The total mechanical energy dissipation (Q -1) for the BaTiO3-BaFe12O19 composites was composed of the mechanical damping of BaFe12O19, the mechanical damping of BaTiO3, and the loss at the interface. The mechanical damping of BaFe12O19 plays the dominant role in the variation of Q -1.

6.
ACS Appl Mater Interfaces ; 14(46): 51819-51834, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36349934

RESUMEN

Constructing facet junction in semiconductor photocatalysts has been demonstrated as an effective method to promote charge-carrier separation and suppress carrier recombination. Herein, we proposed a novel but facile self-doping strategy to regulate the crystal facet exposure ratio in ferroelectric Bi3TixNb2-xO9 single-crystalline nanosheets, thereby optimizing its facet junction effect. Through tuning the atomic ratio of Ti and Nb, the exposure ratio of {001} and {110} crystal planes in Bi3TixNb2-xO9 nanosheets can be delicately modulated, and more {110} facets were exposed with the increase of the Ti/Nb atomic ratio as evidenced by the X-ray diffraction and scanning electron microscopy results. A facet junction between {110} and {001} crystal planes was verified based on the density functional theory calculation and photodeposition experiment results. Photogenerated electrons tend to accumulate in {110}, while holes gathered in {001} crystal planes. Owing to the optimal facet junction effect, the sample of Ti1.05 shows the most efficient charge-carrier separation and transportation compared to Ti0.95 and Ti1.00 as supported by the photoluminescence, surface photovoltage, photoelectrochemistry, and electron paramagnetic resonance (EPR) results. In addition, the oxygen vacancy arising from the inequivalent substitution of Nb5+ by Ti4+ as proved by X-ray photoelectron spectroscopy and EPR results and the enhanced ferroelectricity supported by P-E loops can also assist charge-carrier separation and migration. Benefiting from these properties, Ti1.05 outperformed Ti0.95 and Ti1.00 in the photodegradation of organic dye and antibiotic molecules. Meanwhile, the excellent antibacterial activity of Ti1.05 under visible light was also demonstrated by the Escherichia coli sterilization experiment. This work not only presents a novel pathway to adjust the facet junction but also provides new deep insights into the crystal facet engineering in ferroelectrics as photocatalysts.


Asunto(s)
Antibacterianos , Oxígeno , Antibacterianos/farmacología , Escherichia coli , Niobio , Titanio/farmacología
7.
ACS Appl Mater Interfaces ; 14(43): 48821-48832, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36266254

RESUMEN

High-performance Sr1-xErxTiO3 (x = 0-0.014) ceramics were sintered in different atmospheres using the conventional solid-state reaction method. The phase structure and micromorphology of ceramics were analyzed using X-ray diffraction and scanning electron microscopy. Meanwhile, the Sr1-xErxTiO3 (when x = 0.012) ceramic sintered in hydrogen attains a colossal permittivity (132 543 @1 kHz, 157 650 @1 MHz) and ultralow tan δ (0.009 @1 kHz, 0.03 @1 MHz) and has good frequency stability (20 Hz to 2 MHz) and temperature stability (-180 to 425 °C). X-ray photoelectron spectroscopy, electron paramagnetic resonance, and impedance analysis show that the colossal permittivity and ultralow dielectric loss are attributed to the defect dipoles and defect clusters [TiTi'-VO••-TiTi'], [ErSr•-TiTi'], [2ErTi'-VO••], and [ErSr•-ErTi']. The insulation resistivity is determined by the grain boundary. The dielectric properties of samples sintered in hydrogen are excellent, and then, the oxidation method is used to backfill the oxygen vacancy (VO••), thus improving the insulation resistivity (2.8 × 1014 Ω cm) of the grain boundary. In addition, the diffusion mechanism of ceramic VO•• from low, medium, and high temperatures was studied by monitoring VO•• behavior in real time. The results reveal that the diffusion coefficient of VO•• in the grain boundary is greater than that in the grain; as a result, as the external oxygen partial pressure rises, the VO•• escapes first from the grain boundary. When the external oxygen partial pressure decreases, oxygen atoms enter the grain boundary region first and backfill oxygen vacancies.

8.
Langmuir ; 36(2): 498-509, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31893491

RESUMEN

Cocatalyst surface-loading has been regarded as an effective strategy to promote solar-energy-conversion efficiency. However, the potential influence of surface modification with cocatalysts on the photodegradation pathway and the underlying mechanisms is still unclear. Herein, we have used ferroelectric BaTiO3 as the substrate, and both the reduction cocatalyst Ag and the oxidation cocatalyst MnOx have been successfully loaded onto BaTiO3 simultaneously by a one-step photodeposition method as evidenced by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The influence of dual-cocatalyst surface-loading on photodegradation of rhodamine B has been systematically investigated for the first time. First, the dual-cocatalyst-modified BaTiO3 outperformed over the single-cocatalyst-loaded BaTiO3, and the photodegradation rate of Ag/BaTiO3/MnOx is about 3 times and 12 times as high as that of Ag/BaTiO3 and BaTiO3/MnOx, respectively. The credit is given to the synergistic effect between the reduction and oxidation cocatalysts, prompting charge carrier separation and migration as verified by the transient photocurrent, electrochemical impedance, and photoluminescence (PL) spectrum investigation. Second, in addition to the boosted photodegradation activity, the photodegradation pathway is found to be altered as well when using Ag/BaTiO3/MnOx. High-performance liquid chromatography (HPLC) analysis indicated that a highly selective stepwise deethylation process predominates over chromophore cleavage in the Ag/BaTiO3/MnOx system, while it is reverse for the Ag/BaTiO3 system. This phenomenon is attributed to the different dye molecule adsorption modes. Furthermore, the radical trapping experiment shows that holes play a major role in the degradation process, and the recycle test proves the excellent stability of Ag/BaTiO3/MnOx. Our findings may add another layer of understanding depth to cocatalyst surface modification in photodegradation applications.

9.
Nanotechnology ; 30(25): 255702, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30812015

RESUMEN

Using BaTiO3 as a model ferroelectric material we investigated the influence of the ferroelectric dipole on the photocatalytic activity of a heterogeneous BaTiO3/α-Fe2O3 photocatalyst. Two distinct BaTiO3 samples were used: BTO and BTO-A. The latter consists more ferroelectric tetragonal phase and thus stronger ferroelectricity. It was found that under identical experimental conditions, the photodecolourisation rate of a target dye using BTO-A/α-Fe2O3 under visible light was 1.3 times that of BTO/α-Fe2O3. Photoelectrochemical and photoluminescence analysis confirmed a more effective charge carrier separation in BTO-A/α-Fe2O3. Considering solely the photoexcitation of α-Fe2O3 in the composite photocatalysts under visible light and the similar microstructures of the two catalysts, we propose that the enhanced decolourisation rate when using BTO-A/α-Fe2O3 is due to the improved charge carrier separation and extended charge carrier lifetime arising from an interaction between the ferroelectric dipole and the carriers in α-Fe2O3. Our results demonstrate a new process to use a ferroelectric dipole to manipulate the charge carrier transport, overcome recombination, and extend the charge carrier lifetime of the surface material in a heterogeneous catalyst system.

10.
ACS Appl Mater Interfaces ; 9(34): 29130-29139, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28792204

RESUMEN

Ba(Fe0.5Ta0.5)O3/poly(vinylidene fluoride) (BFT/PVDF) flexible nanocomposite films are fabricated by tape casting using dopamine (DA)-modified BFT nanopowders and PVDF as a matrix polymer. After a surface modification of installing a DA layer with a thickness of 5 nm, the interfacial couple interaction between BFT and PVDF is enhanced, resulting in less hole defects at the interface. Then the dielectric constant (ε'), loss tangent (tan δ), and AC conductivity of nanocomposite films are reduced. Meanwhile, the value of the reduced dielectric constant (Δε') and the strength of interfacial polarization (k) are introduced to illustrate the effect of DA on the dielectric behavior of nanocomposite films. Δε' can be used to calculate the magnitude of interfacial polarization, and the strength of the dielectric constant contributed by the interface can be expressed as k. Most importantly, the energy-storage density and energy-storage efficiency of nanocomposite films with a small BFT@DA filler content of 1 vol % at a low electric field of 150 MV/m are enhanced by about 15% and 120%, respectively, after DA modification. The high energy-storage density of 1.81 J/cm3 is obtained in the sample. This value is much larger than the reported polymer-based nanocomposite films. In addition, the outstanding cycle and bending stability of the nanocomposite films make it a promising candidate for future flexible portable energy devices.

11.
Sci Rep ; 6: 37701, 2016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27876878

RESUMEN

Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe2O4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H2) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe2O4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (Ms) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (Hc) decreased monotonously firstly and then basically stayed unchanged. The largest Ms (~145.7 emu·g-1) and the moderate Hc (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...