Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nanosci Au ; 3(3): 222-229, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37360844

RESUMEN

Herein, we designed and synthesized a hybrid material comprising polystyrene submicrobeads coated with silver nanospheres. This material provides a dense collection of electromagnetic hot spots upon illumination with visible light. The subsequent coating with a metal-framework and the adsorption of bathocuproine on it yield an optical sensor for SERS that can specifically detect Cu(II) in a variety of aqueous samples at the ultratrace level. Detection limits with this method are superior to those of induced coupled plasma or atomic absorption and comparable with those obtained with induced coupled plasma coupled with a mass detector.

2.
Angew Chem Int Ed Engl ; 62(26): e202305299, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37186430

RESUMEN

Hybrid composites between nanoparticles and metal organic frameworks (MOFs) have been described as optimal materials for a wide range of applications in optical sensing, drug delivery, pollutant removal or catalysis. These materials are usually core-shell single- or multi-nanoparticles, restricting the inorganic surface available for reaction. Here, we develop a method for the preparation of yolk-shells consisting in a plasmonic gold nanostar coated with MOF. This configuration shows more colloidal stability, can sieve different molecules based on their size or charge, seems to show some interesting synergy with gold for their application in photocatalysis and present strong optical activity to be used as SERS sensors.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Oro , Sistemas de Liberación de Medicamentos , Catálisis
3.
Angew Chem Int Ed Engl ; 62(10): e202215427, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36479797

RESUMEN

Bioorthogonal chemistry has inspired a new subarea of chemistry providing a powerful tool to perform novel biocompatible chemospecific reactions in living systems. Following the premise that they do not interfere with biological functions, bioorthogonal reactions are increasingly applied in biomedical research, particularly with respect to genetic encoding systems, fluorogenic reactions for bioimaging, and cancer therapy. This Minireview compiles recent advances in the use of heterogeneous catalysts for bioorthogonal reactions. The synthetic strategies of Pd-, Au-, and Cu-based materials, their applicability in the activation of caged fluorophores and prodrugs, and the possibilities of using external stimuli to release therapeutic substances at a specific location in a diseased tissue are discussed. Finally, we highlight frontiers in the field, identifying challenges, and propose directions for future development in this emerging field.


Asunto(s)
Nanoestructuras , Profármacos , Colorantes Fluorescentes/química , Catálisis
4.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35957125

RESUMEN

Supercapacitors have been recognized as one of the more promising energy storage devices, with great potential use in portable electronics and hybrid vehicles. In this study, a composite made of clusters of iron oxide (Fe3O4-γFe2O3) nanoparticles and reduced graphene oxide (rGO) has been developed through a simple one-step solvothermal synthesis method for a high-performance supercapacitor electrode. Electrochemical assessment via cyclic voltammetry, galvanostatic charge-discharge experiments, and electrochemical impedance spectroscopy (EIS) revealed that the Fe3O4-γFe2O3/rGO nanocomposite showed much higher specific capacitance than either rGO or bare clusters of Fe3O4-γFe2O3 nanoparticles. In particular, specific capacitance values of 100 F g-1, 250 F g-1, and 528 F g-1 were obtained for the clusters of iron oxide nanoparticles, rGO, and the hybrid nanostructure, respectively. The enhancement of the electrochemical performance of the composite material may be attributed to the synergistic interaction between the layers of graphene oxide and the clusters of iron oxide nanoparticles. The intimate contact between the two phases eliminates the interface, thus enabling facile electron transport, which is key to attaining high specific capacitance and, consequently, enhanced charge-discharge time. Performance evaluation in consecutive cycles has demonstrated that the composite material retains 110% of its initial capacitance after 3000 cycles, making it a promising candidate for supercapacitors.

5.
Chemistry ; 26(68): 16129-16137, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32677719

RESUMEN

The methoxycarbonylation of anilines stands as an attractive method for the phosgene-free production of carbamates. Despite the high yields obtained for ceria catalysts, the reduction of the amount of side products and the prevention of catalyst deactivation still represent major hurdles in this chemistry. One advantage of ceria is the possibility of tuning its reactivity by doping its lattice with other metals. In the present work, a series of doped ceria-based materials, prepared by substitution with metals, are evaluated in the methoxycarbonylation of 2,4-diaminotoluene with dimethyl carbonate. Among all catalysts, containing Eu, Hf, La, Pr, Sm, Tb, Y or Zr, ceria promoted with 2 mol % Zr exhibited 96 % selectivity towards the desired carbamates, improving the pure CeO2 catalyst. Density functional theory demonstrates that two descriptors are needed: 1) a geometric factor that governs the reduction of energy barriers for carbamate formation through ureas; 2) catalyst basicity as N-H bonds need to be activated. Assessment in subsequent reaction cycles revealed that the CeO2 -ZrO2 catalyst is more stable than bulk CeO2 , along with the reduction of fouling processes.

6.
Adv Sci (Weinh) ; 7(7): 1902897, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32274302

RESUMEN

The applicability of advanced composite materials with hierarchical structure that conjugate metal-organic frameworks (MOFs) with macroporous materials is commonly limited by their inferior mechanical properties. Here, a universal green synthesis method for the in situ growth of MOF nanocrystals within wood substrates is introduced. Nucleation sites for different types of MOFs are readily created by a sodium hydroxide treatment, which is demonstrated to be broadly applicable to different wood species. The resulting MOF/wood composite exhibits hierarchical porosity with 130 times larger specific surface area compared to native wood. Assessment of the CO2 adsorption capacity demonstrates the efficient utilization of the MOF loading along with similar adsorption ability to that of pure MOF. Compression and tensile tests reveal superior mechanical properties, which surpass those obtained for polymer substrates. The functionalization strategy offers a stable, sustainable, and scalable platform for the fabrication of multifunctional MOF/wood-derived composites with potential applications in environmental- and energy-related fields.

7.
Nat Commun ; 10(1): 3377, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358766

RESUMEN

Metal promotion is broadly applied to enhance the performance of heterogeneous catalysts to fulfill industrial requirements. Still, generating and quantifying the effect of the promoter speciation that exclusively introduces desired properties and ensures proximity to or accommodation within the active site and durability upon reaction is very challenging. Recently, In2O3 was discovered as a highly selective and stable catalyst for green methanol production from CO2. Activity boosting by promotion with palladium, an efficient H2-splitter, was partially successful since palladium nanoparticles mediate the parasitic reverse water-gas shift reaction, reducing selectivity, and sinter or alloy with indium, limiting metal utilization and robustness. Here, we show that the precise palladium atoms architecture reached by controlled co-precipitation eliminates these limitations. Palladium atoms replacing indium atoms in the active In3O5 ensemble attract additional palladium atoms deposited onto the surface forming low-nuclearity clusters, which foster H2 activation and remain unaltered, enabling record productivities for 500 h.

8.
ChemSusChem ; 12(12): 2628-2636, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30994965

RESUMEN

The need for more sustainable products and processes has led to the use of new methodologies with low carbon footprints. In this work, an efficient tandem process is demonstrated for the liquid-phase catalytic upgrading of lignocellulosic biomass-derived γ-valerolactone (GVL) with trioxane (Tx) to α-methylene-γ-valerolactone (MeGVL) in flow system using Cs-loaded hierarchical beta zeolites. The introduction of mesopores along with the presence of basic sites of mild strength leads to MeGVL productivity 20 times higher than with the bulk beta zeolite, reaching 0.325 mmol min-1 gcat -1 for the best-performing catalyst, the highest value reported so far. This catalyst proves stable upon reuse in consecutive cycles, which is ascribed to the partial depletion of the basic sites. The obtained MeGVL is subjected to visible-light-induced polymerization, resulting in a final material with similar properties to the widely used poly(methyl) methacrylate.

9.
Angew Chem Int Ed Engl ; 58(18): 5877-5881, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30645015

RESUMEN

The product distribution in direct alkane functionalization by oxyhalogenation strongly depends on the halogen of choice. We demonstrate that the superior selectivity to olefins over an iron phosphate catalyst in oxychlorination is the consequence of a surface-confined reaction. By contrast, in oxybromination alkane activation follows a gas-phase radical-chain mechanism and yields a mixture of alkyl bromide, cracking, and combustion products. Surface-coverage analysis of the catalyst and identification of gas-phase radicals in operando mode are correlated to the catalytic performance by a multi-technique approach, which combines kinetic studies with advanced characterization techniques such as prompt-gamma activation analysis and photoelectron photoion coincidence spectroscopy. Rationalization of gas-phase and surface contributions by density functional theory reveals that the molecular level effects of chlorine are pivotal in determining the stark selectivity differences. These results provide strategies for unraveling detailed mechanisms within complex reaction networks.

10.
ChemSusChem ; 11(17): 2859-2869, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-29998552

RESUMEN

CO2 hydrogenation is attracting increasing attention as a sustainable route to produce formic acid, a commodity and potential energy vector. Here, bifunctional catalysts comprising metal nanoparticles deposited on bulk graphitic carbon nitride were assessed under base-free conditions, identifying supported Pd as the best performer. The catalyst productivity was enhanced by maximizing the edge-defects of the g-C3 N4 carrier, amino groups able to activate CO2 , and by generating welldispersed 5 nm Pd particles, required to split H2 . Bottom-up synthesis methods, that is, hard-templating and carbon enrichment upon polymerization, and top-down strategies, that is, thermal exfoliation of the as-prepared solid, were explored to boost the defects, the nature and density of which were evaluated by thermal and (in situ) spectroscopic techniques. After optimization of temperature, pressure, and reaction time, a 20 times higher turnover frequency compared with the best Pd/g-C3 N4 catalyst reported producing formic acid from CO2 without base was attained. This activity level was retained upon recycling with intermediate catalyst regeneration at mild temperature.

11.
Angew Chem Int Ed Engl ; 56(7): 1775-1779, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-27981710

RESUMEN

Ligand-modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2 O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state-of-the-art bimetallic catalysts (HHDMA=C20 H46 NO5 P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over-hydrogenation. These findings demonstrate the importance of understanding substrate-ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide.

12.
ChemSusChem ; 8(19): 3283-93, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26336806

RESUMEN

The properties of crude bio-oils attained by the pyrolysis of lignocellulosic biomass can be greatly enhanced by means of catalytic upgrading. Here, we demonstrate an efficient process concept coupling the production of pyrolysis oil from pine wood with a consecutive catalytic upgrading step over hierarchically structured ZSM-5 zeolites to attain aromatic-rich bio-oils. The selective upgrading of these complex mixtures is shown to be tightly connected to the extent of mesopore development and the density of Brønsted acid sites at the mesopore surface. A full product analysis enables elucidation of the impact of mesopore introduction and the acidic properties on the complex reaction network. The preferential occurrence of decarbonylation reactions in hierarchical zeolites versus dehydration transformations in the bulk counterparts is believed to be decisive in promoting increased aromatics formation.


Asunto(s)
Biocombustibles , Hidrocarburos Aromáticos/química , Aceites de Plantas/química , Zeolitas/química , Catálisis , Concentración de Iones de Hidrógeno , Pinus/química , Porosidad , Madera/química
13.
ChemSusChem ; 6(8): 1467-77, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23821518

RESUMEN

A high percentage of hydrocarbon (HC) emissions from gasoline vehicles occur during the cold-start period. Among the alternatives proposed to reduce these HC emissions, the use of zeolites before the three-way catalyst (TWC) is thought to be very effective. Zeolites are the preferred adsorbents for this application; however, to avoid high pressure drops, supported zeolites are needed. In this work, two coating methods (dip-coating and in situ crystallization) are optimized to prepare BETA zeolite thin films supported on honeycomb monoliths with tunable properties. The important effect of the density of the thin film in the final performance as a HC trap is demonstrated. A highly effective HC trap is prepared showing 100% toluene retention, accomplishing the desired performance as a HC trap, desorbing propene at temperatures close to 300 °C, and remaining stable after cycling. The use of this material before the TWC is very promising, and works towards achieving the sustainability and environmental protection goals.


Asunto(s)
Frío , Hidrocarburos/química , Emisiones de Vehículos , Zeolitas/química , Adsorción , Cristalización , Gasolina , Tecnología Química Verde
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...