Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Soc Trans ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747723

RESUMEN

Protein-mediated membrane fission has been analyzed both in bulk and at the single event resolution. Studies on membrane fission in vitro using tethers have provided fundamental insights into the process but are low in throughput. In recent years, supported membrane template (SMrT) have emerged as a facile and convenient assay system for membrane fission. SMrTs provide useful information on intermediates in the pathway to fission and are therefore high in content. They are also high in throughput because numerous fission events can be monitored in a single experiment. This review discusses the utility of SMrTs in providing insights into fission pathways and its adaptation to annotate membrane fission functions in proteins.

2.
Proc Natl Acad Sci U S A ; 121(20): e2402180121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38717859

RESUMEN

Membrane tubulation coupled with fission (MTCF) is a widespread phenomenon but mechanisms for their coordination remain unclear, partly because of the lack of assays to monitor dynamics of membrane tubulation and subsequent fission. Using polymer cushioned bilayer islands, we analyze the membrane tubulator Bridging Integrator 1 (BIN1) mixed with the fission catalyst dynamin2 (Dyn2). Our results reveal this mixture to constitute a minimal two-component module that demonstrates MTCF. MTCF is an emergent property and arises because BIN1 facilitates recruitment but inhibits membrane binding of Dyn2 in a dose-dependent manner. MTCF is therefore apparent only at high Dyn2 to BIN1 ratios. Because of their mutual involvement in T-tubules biogenesis, mutations in BIN1 and Dyn2 are associated with centronuclear myopathies and our analysis links the pathology with aberrant MTCF. Together, our results establish cushioned bilayer islands as a facile template for the analysis of membrane tubulation and inform of mechanisms that coordinate MTCF.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Dinamina II , Proteínas Supresoras de Tumor , Dinamina II/metabolismo , Dinamina II/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Membrana Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Dinámicas Mitocondriales/fisiología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo
4.
Curr Opin Cell Biol ; 83: 102204, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451176

RESUMEN

Endocytic dynamins self-assemble into helical scaffolds and utilize energy from GTP hydrolysis to constrict and sever tubular membranous necks of budded endocytic intermediates. They bind the membrane using a pleckstrin-homology domain (PHD). The PHD is characterized by four unstructured loops, two of which partially insert into the membrane. Recent studies reveal that loop insertion lowers the bending rigidity of the membrane and that mutations in these two loops produce separable and opposite effects on the efficiency of dynamin-catalyzed membrane fission. Here, we review the current understanding of dynamin-catalyzed membrane fission and attempt to reconcile contrasting notions that have emerged from biochemical and cellular studies evaluating the role of the PHD in this process. We propose that two membrane-inserting loops act as "gears" that define the catalytic efficiency of the dynamin helical scaffold in membrane fission.


Asunto(s)
Dinaminas , Membrana Celular/metabolismo , Dinaminas/química , Dinaminas/genética , Dinaminas/metabolismo , Mutación , Catálisis , Guanosina Trifosfato/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(11): e2215250120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36888655

RESUMEN

Classical dynamins are best understood for their ability to generate vesicles by membrane fission. During clathrin-mediated endocytosis (CME), dynamin is recruited to the membrane through multivalent protein and lipid interactions between its proline-rich domain (PRD) with SRC Homology 3 (SH3) domains in endocytic proteins and its pleckstrin-homology domain (PHD) with membrane lipids. Variable loops (VL) in the PHD bind lipids and partially insert into the membrane thereby anchoring the PHD to the membrane. Recent molecular dynamics (MD) simulations reveal a novel VL4 that interacts with the membrane. Importantly, a missense mutation that reduces VL4 hydrophobicity is linked to an autosomal dominant form of Charcot-Marie-Tooth (CMT) neuropathy. We analyzed the orientation and function of the VL4 to mechanistically link data from simulations with the CMT neuropathy. Structural modeling of PHDs in the cryo-electron microscopy (cryo-EM) cryoEM map of the membrane-bound dynamin polymer confirms VL4 as a membrane-interacting loop. In assays that rely solely on lipid-based membrane recruitment, VL4 mutants with reduced hydrophobicity showed an acute membrane curvature-dependent binding and a catalytic defect in fission. Remarkably, in assays that mimic a physiological multivalent lipid- and protein-based recruitment, VL4 mutants were completely defective in fission across a range of membrane curvatures. Importantly, expression of these mutants in cells inhibited CME, consistent with the autosomal dominant phenotype associated with the CMT neuropathy. Together, our results emphasize the significance of finely tuned lipid and protein interactions for efficient dynamin function.


Asunto(s)
Proteínas Sanguíneas , Dinaminas , Microscopía por Crioelectrón , Dinaminas/metabolismo , Endocitosis/fisiología , Lípidos , Dinamina I/metabolismo
6.
Mol Cell ; 83(6): 819-823, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931251

RESUMEN

Much more than the "powerhouse" of the cell, mitochondria have emerged as critical hubs involved in metabolism, cell death, inflammation, signaling, and stress responses. To open our mitochondria focus issue, we asked several scientists to share the unanswered questions, emerging themes, and topics of investigation that excite them.


Asunto(s)
Mitocondrias , Transducción de Señal , Humanos , Mitocondrias/metabolismo , Muerte Celular , Inflamación/metabolismo
8.
J Membr Biol ; 255(2-3): 143-150, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35218392

RESUMEN

Dynamin-related protein1 (Drp1) functions to divide mitochondria and peroxisomes by binding specific adaptor proteins and lipids, both of which are integral to the limiting organellar membrane. In efforts to understand how such multivalent interactions regulate Drp1 functions, in vitro reconstitution schemes rely on recruiting soluble portions of the adaptors appended with genetically encoded polyhistidine tags onto membranes containing Ni2+-bound chelator lipids. These strategies are facile and circumvent the challenge in working with membrane proteins but assume that binding is specific to proteins carrying the polyhistidine tag. Here, we find using chelator lipids and chelator beads that both native and recombinant Drp1 directly bind Ni2+ ions. Metal binding, therefore, represents a potential strategy to deplete or purify Drp1 from native tissue lysates. Importantly, high concentrations of the metal in solution inhibit GTP hydrolysis and renders Drp1 inactive in membrane fission. Together, our results emphasize a metal-binding propensity, which could significantly impact Drp1 functions.


Asunto(s)
Dinámicas Mitocondriales , Proteínas Mitocondriales , Quelantes/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Lípidos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
9.
J Membr Biol ; 255(4-5): 591-597, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35226119

RESUMEN

Discovery-based proteomics workflows that identify novel interactors rely on immunoprecipitations or pull-downs with genetically tagged bait proteins immobilized on appropriate matrices. But strategies to analyse protein interactions on a diffusible-membrane surface combined with the practical ease of pull-downs remain unavailable. Such strategies are important to analyse protein complexes that mature in composition and stability because of diffusion-based encounter between participant proteins. Here, we describe a generic pull-down strategy to analyse such complexes using chelating lipid-containing supported bilayers formed on silica beads. These templates can display desired His-tagged bait proteins on a diffusible-membrane surface. Using clathrin-mediated endocytosis as a paradigm, we find that the clathrin-binding adaptor protein epsin1 displayed as bait on these templates pulls down significantly higher amounts of clathrin from brain lysates than when immobilized on conventional matrices. Together, our results establish the potential of such templates as superior matrices for analysing protein-protein interactions and resultant complexes formed on membrane surfaces.


Asunto(s)
Clatrina , Dióxido de Silicio , Humanos , Clatrina/metabolismo , Endocitosis , Proteómica , Lípidos
10.
Nature ; 590(7844): 57-66, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536648

RESUMEN

Mitochondria form dynamic networks in the cell that are balanced by the flux of iterative fusion and fission events of the organelles. It is now appreciated that mitochondrial fission also represents an end-point event in a signalling axis that allows cells to sense and respond to external cues. The fission process is orchestrated by membrane-associated adaptors, influenced by organellar and cytoskeletal interactions and ultimately executed by the dynamin-like GTPase DRP1. Here we invoke the framework of the 'mitochondrial divisome', which is conceptually and operationally similar to the bacterial cell-division machinery. We review the functional and regulatory aspects of the mitochondrial divisome and, within this framework, parse the core from the accessory machinery. In so doing, we transition from a phenomenological to a mechanistic understanding of the fission process.


Asunto(s)
Mitocondrias/química , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Animales , Evolución Biológica , Señalización del Calcio , Muerte Celular , Enfermedad , Dinaminas/química , Dinaminas/genética , Dinaminas/metabolismo , Salud , Humanos , Mitocondrias/patología
11.
Curr Protoc Protein Sci ; 101(1): e110, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32603530

RESUMEN

Peripheral membrane proteins participate in numerous biological pathways. Thus, methods to analyze their membrane-binding characteristics have become important. In this report, we detail protocols for the synthesis and utilization of a photoactivable fluorescent lipid as a reporter to monitor membrane binding of proteins. The assay, referred to as proximity-based labeling of membrane-associated proteins (PLiMAP), is based on UV activation of a fluorescent lipid reporter, which in turn crosslinks with proteins bound to membranes and renders them fluorescent. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of BODIPY-diazirine phosphatidylethanolamine (BDPE) Basic Protocol 2: Preparation of BDPE-containing liposomes Basic Protocol 3: Performing PLiMAP with a candidate protein Basic Protocol 4: Quantitation of liposome-binding properties of the candidate protein from analyzing in-gel fluorescence Support Protocol: Purification of GST-2×P4M domain of SidM protein.


Asunto(s)
Compuestos de Boro/química , Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Proteínas de la Membrana/metabolismo , Espectrometría de Fluorescencia/métodos , Animales , Membrana Celular/química , Diazometano/química , Humanos , Liposomas/química , Liposomas/metabolismo , Proteínas de la Membrana/química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Procesos Fotoquímicos , Unión Proteica
12.
Protein Sci ; 29(6): 1321-1330, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32223019

RESUMEN

Several cellular processes rely on a cohort of dedicated proteins that manage tubulation, fission, and fusion of membranes. A notably large number of them belong to the dynamin superfamily of proteins. Among them is the evolutionarily conserved group of ATP-binding Eps15-homology domain-containing proteins (EHDs). In the two decades since their discovery, EHDs have been linked to a range of cellular processes that require remodeling or maintenance of specific membrane shapes such as during endocytic recycling, caveolar biogenesis, ciliogenesis, formation of T-tubules in skeletal muscles, and membrane resealing after rupture. Recent work has shed light on their structure and the unique attributes they possess in linking ATP hydrolysis to membrane remodeling. This review summarizes some of these recent developments and reconciles intrinsic protein functions to their cellular roles.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfato/química , Animales , Humanos , Hidrólisis , Dominios Proteicos , Proteínas de Transporte Vesicular/química
13.
Traffic ; 21(3): 297-305, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31846132

RESUMEN

Soluble proteins that bind membranes function in numerous cellular pathways yet facile, sensitive and quantitative methods that complement and improve sensitivity of widely used liposomes-based assays remain unavailable. Here, we describe the utility of a photoactivable fluorescent lipid as a generic reporter of protein-membrane interactions. When incorporated into liposomes and exposed to ultraviolet (UV), proteins bound to liposomes become crosslinked with the fluorescent lipid and can be readily detected and quantitated by in-gel fluorescence analysis. This modification obviates the requirement for high-speed centrifugation spins common to most liposome-binding assays. We refer to this assay as Proximity-based Labeling of Membrane-Associated Proteins (PLiMAP).


Asunto(s)
Lípidos , Liposomas , Proteínas de la Membrana , Membranas
14.
Biochemistry ; 58(1): 65-71, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30403133

RESUMEN

Membrane fission manifests during cell division, synaptic transmission, vesicular transport, and organelle biogenesis, yet identifying proteins that catalyze fission remains a challenge. Using a facile and robust assay system of supported membrane tubes in a microscopic screen that directly monitors membrane tube scission, we detect robust GTP- and ATP-dependent as well as nucleotide-independent fission activity in the brain cytosol. Using previously established interacting partner proteins as bait for pulldowns, we attribute the GTP-dependent fission activity to dynamin. Biochemical fractionation followed by mass spectrometric analyses identifies the Eps15-homology domain-containing protein1 (EHD1) as a novel ATP-dependent membrane fission catalyst. Together, our approach establishes an experimental workflow for the discovery of novel membrane fission catalysts.


Asunto(s)
Encéfalo/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Citosol/metabolismo , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Transporte Biológico , Cabras , Ensayos Analíticos de Alto Rendimiento , Humanos
15.
Nat Commun ; 9(1): 5187, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518883

RESUMEN

Endocytic and recycling pathways generate cargo-laden transport carriers by membrane fission. Classical dynamins, which generate transport carriers during endocytosis, constrict and cause fission of membrane tubes in response to GTP hydrolysis. Relatively, less is known about the ATP-binding Eps15-homology domain-containing protein1 (EHD1), a dynamin family member that functions at the endocytic-recycling compartment. Here, we show using cross complementation assays in C. elegans that EHD1's membrane binding and ATP hydrolysis activities are necessary for endocytic recycling. Further, we show that ATP-bound EHD1 forms membrane-active scaffolds that bulge tubular model membranes. ATP hydrolysis promotes scaffold self-assembly, causing the bulge to extend and thin down intermediate regions on the tube. On tubes below 25 nm in radius, such thinning leads to scission. Molecular dynamics simulations corroborate this scission pathway. Deletion of N-terminal residues causes defects in stable scaffolding, scission and endocytic recycling. Thus, ATP hydrolysis-dependent membrane remodeling links EHD1 functions to endocytic recycling.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Endocitosis , Secuencias de Aminoácidos , Animales , Transporte Biológico , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Hidrólisis , Eliminación de Secuencia
16.
Nat Commun ; 9(1): 5239, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30531964

RESUMEN

Dynamin-related protein 1 (Drp1) is essential for mitochondrial and peroxisomal fission. Recent studies propose that Drp1 does not sever but rather constricts mitochondrial membranes allowing dynamin 2 (Dnm2) to execute final scission. Here, we report that unlike Drp1, Dnm2 is dispensable for peroxisomal and mitochondrial fission, as these events occurred in Dnm2 knockout cells. Fission events were also observed in mouse embryonic fibroblasts lacking Dnm1, 2 and 3. Using reconstitution experiments on preformed membrane tubes, we show that Drp1 alone both constricts and severs membrane tubes. Scission required the membrane binding, self-assembling and GTPase activities of Drp1 and occurred on tubes up to 250 nm in radius. In contrast, Dnm2 exhibited severely restricted fission capacity with occasional severing of tubes below 50 nm in radius. We conclude that Drp1 has both membrane constricting and severing abilities and is the dominant dynamin performing mitochondrial and peroxisomal fission.


Asunto(s)
Dinaminas/metabolismo , Fusión de Membrana , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Animales , Línea Celular , Dinamina II/genética , Dinamina II/metabolismo , Dinaminas/genética , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Ratones Noqueados , Microscopía Confocal , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo
17.
J Cell Biol ; 217(12): 4199-4214, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30309979

RESUMEN

SipA is a major effector of Salmonella, which causes gastroenteritis and enteric fever. Caspase-3 cleaves SipA into two domains: the C-terminal domain regulates actin polymerization, whereas the function of the N terminus is unknown. We show that the cleaved SipA N terminus binds and recruits host Syntaxin8 (Syn8) to Salmonella-containing vacuoles (SCVs). The SipA N terminus contains a SNARE motif with a conserved arginine residue like mammalian R-SNAREs. SipAR204Q and SipA1-435R204Q do not bind Syn8, demonstrating that SipA mimics a cognate R-SNARE for Syn8. Consequently, Salmonella lacking SipA or that express the SipA1-435R204Q SNARE mutant are unable to recruit Syn8 to SCVs. Finally, we show that SipA mimicking an R-SNARE recruits Syn8, Syn13, and Syn7 to the SCV and promotes its fusion with early endosomes to potentially arrest its maturation. Our results reveal that SipA functionally substitutes endogenous SNAREs in order to hijack the host trafficking pathway and promote Salmonella survival.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endosomas/metabolismo , Interacciones Huésped-Patógeno , Fusión de Membrana , Proteínas de Microfilamentos/metabolismo , Proteínas Qa-SNARE/metabolismo , Salmonella/fisiología , Proteínas Bacterianas/genética , Endosomas/microbiología , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Proteínas Qa-SNARE/genética
18.
Methods Mol Biol ; 1847: 161-175, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30129016

RESUMEN

Clathrin-mediated endocytosis manages the vesicular transport of the bulk of membrane proteins from the plasma membrane and the trans-Golgi network. During this process, discrete sets of adaptor proteins recognize specific classes of membrane proteins, which recruit and assemble clathrin lattices on the membrane. An important determinant to the success of this vesicular transport reaction is the intrinsic ability of adaptors to polymerize clathrin on a membrane surface. Adaptor-induced clathrin assembly has traditionally been analyzed using static electron microscopy-based approaches. Here, we describe a methodology to follow adaptor-induced clathrin assembly in real-time using fluorescence microscopy on a facile model membrane assay system of supported membrane tubes (SMrT). Results from such assays can be conveniently run through routine image analysis procedures to extract kinetic parameters of the clathrin assembly reaction.


Asunto(s)
Clatrina/metabolismo , Microscopía Fluorescente/métodos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis , Humanos
19.
J Biosci ; 43(3): 431-435, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30002262

RESUMEN

Membrane remodelling or the bending and rupture of the lipid bilayer occurs during diverse cellular processes such as cell division, synaptic transmission, vesicular transport, organelle biogenesis and sporulation. These activities are brought about by the localized change in membrane curvature, which in turn causes lipid-packing stress, of a planar lipid bilayer by proteins. For instance, vesicular transport processes are typically characterized by the cooperative recruitment of proteins that induce budding of a planar membrane and catalyse fission of the necks of membrane buds to release vesicles. The analysis of such membrane remodelling reactions has traditionally been restricted to electron microscopy-based approaches or force spectroscopic analysis of membrane tethers pulled from liposome-based model membrane systems. Our recent work has demonstrated the facile creation of tubular model membrane systems of supported membrane tubes (SMrTs), which mimic late-stage intermediates of typical vesicular transport reactions. This review addresses the nature of such an assay system and a fluorescence-intensity-based analysis of changes in tube dimensions that is indicative of the membrane remodelling capacity of proteins.


Asunto(s)
Membrana Celular/ultraestructura , Membrana Dobles de Lípidos/química , Liposomas/ultraestructura , Microscopía Fluorescente/métodos , Microtúbulos/ultraestructura , Vesículas Transportadoras/ultraestructura , Animales , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , División Celular , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Liposomas/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Biogénesis de Organelos , Fosfolípidos/química , Fosfolípidos/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
20.
J Phys D Appl Phys ; 51(34)2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30655651

RESUMEN

The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo- and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA