Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Neurooncol Pract ; 11(4): 475-483, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39006516

RESUMEN

Background: We observed rapid tumor progression following COVID-19 infection among patients with glioblastoma and sought to systematically characterize their disease course in a retrospective case-control study. Methods: Using an institutional database, we retrospectively identified a series of COVID-19-positive glioblastoma cases and matched them by age and sex 1:2 to glioblastoma controls who had a negative COVID-19 test during their disease course. Demographic and clinical data were analyzed. Hyperprogression was defined using modified response evaluation criteria in solid tumors criteria. Time to progression and overall survival were estimated using the Kaplan-Meier method. Results: Thirty-two glioblastoma cases with positive COVID-19 testing were matched to 64 glioblastoma controls with negative testing; age, sex, and molecular profiles did not differ between groups. Progression events occurred in 27 cases (84%) and 46 controls (72%). Of these, 14 cases (52%) presented with multifocal disease or leptomeningeal disease at progression compared with 10 controls (22%; P = .0082). Hyperprogression was identified in 13 cases (48%) but only 4 controls (9%; P = .0001). Cases had disease progression at a median of 35 days following COVID-19 testing, compared with 164 days for controls (P = .0001). Median survival from COVID-19 testing until death was 8.3 months for cases but 17 months for controls (P = .0016). Median overall survival from glioblastoma diagnosis was 20.7 months for cases and 24.6 months for controls (P = .672). Conclusions: Patients with glioblastoma may have accelerated disease progression in the first 2 months after COVID-19 infection. Infected patients should be monitored vigilantly. Future investigations should explore tumor-immune microenvironment changes linking tumor progression and COVID-19.

2.
STAR Protoc ; 5(3): 103159, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38941182

RESUMEN

Glioma cells switch between energetic pathways to adapt and resist therapies. We present a protocol for measuring mitochondrial and glycolytic ATP rates in patient-derived glioma stem-like cells using a Seahorse XF ATP rate assay. We describe steps for growing 3D glioma stem-like cells, attaching cells to the assay plate, preparing drugs, and running the ATP rate assay. We also detail procedures for imaging viable cell numbers and normalization, with tips to overcome pitfalls in Agilent Seahorse assays.

3.
J Clin Oncol ; 42(21): 2588-2598, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38833641

RESUMEN

Mutations in isocitrate dehydrogenase (IDH) genes, an early step in the ontogeny of lower-grade gliomas, induce global epigenetic changes characterized by a hypermethylation phenotype and are critical to tumor classification, treatment decision making, and estimation of patient prognosis. The introduction of IDH inhibitors to block the oncogenic neomorphic function of the mutated protein has resulted in new therapeutic options for these patients. To appreciate the implications of these recent IDH inhibitor results, it is important to juxtapose historical outcomes with chemoradiotherapy. Herein, we rationally evaluate recent IDH inhibitor data within historical precedents to guide contemporary decisions regarding the role of observation, maximal safe resection, adjuvant therapies, and the import of patient and tumor variables. The biological underpinnings of the IDH pathway and the mechanisms, impact, and limitations of IDH inhibitors, the actual magnitude of tumor regression and patient benefit, and emergence of resistance pathways are presented to guide future trial development. Management in the current, molecularly defined era will require careful patient selection and risk factor assessment, followed by an open dialog about the results of studies such as INDIGO, as well as mature data from legacy trials, and a discussion about risk-versus-benefit for the choice of treatment, with multidisciplinary decision making as an absolute prerequisite.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Glioma/genética , Glioma/terapia , Glioma/tratamiento farmacológico , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología
4.
Neurooncol Pract ; 11(2): 188-198, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38496907

RESUMEN

Background: Patients with relapsed intracranial germinoma can achieve durable remission with standard chemotherapy regimens and/or reirradiation; however, innovative therapies are required for patients with relapsed and/or refractory intracranial nongerminomatous germ cell tumors (NGGCTs) due to their poor prognosis. Improved outcomes have been reported using reinduction chemotherapy to achieve minimal residual disease, followed by marrow-ablative chemotherapy (HDCx) with autologous hematopoietic progenitor cell rescue (AuHPCR). We conducted a phase II trial evaluating the response and toxicity of a 3-drug combination developed for recurrent intracranial germ cell tumors consisting of gemcitabine, paclitaxel, and oxaliplatin (GemPOx). Methods: A total of 9 patients with confirmed relapsed or refractory intracranial GCT were enrolled after signing informed consent, and received at least 2 cycles of GemPOx, of which all but 1 had relapsed or refractory NGGCTs. One patient with progressive disease was found to have pathologically confirmed malignant transformation to pure embryonal rhabdomyosarcoma (without GCT elements), hence was ineligible and not included in the analysis. Patients who experienced sufficient responses proceeded to receive HDCx with AuHPCR. Treatment response was determined based on radiographic tumor assessments and tumor markers. Results: A total of 7 patients achieved sufficient response and proceeded with HDCx and AuHPCR, and 5 subsequently received additional radiotherapy. A total of 2 patients developed progressive disease while receiving GemPOx. Myelosuppression and transaminitis were the most common treatment-related adverse events. With a mean follow-up of 44 months, 4 patients (3 NGGCTs, 1 germinoma) are alive without evidence of disease. Conclusions: GemPOx demonstrates efficacy in facilitating stem cell mobilization, thus facilitating the feasibility of both HDCx and radiotherapy.

5.
BMC Med ; 21(1): 487, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053181

RESUMEN

BACKGROUND: Glioma is one of the leading types of brain tumor, but few etiologic factors of primary glioma have been identified. Previous observational research has shown an association between viral infection and glioma risk. In this study, we used Mendelian randomization (MR) analysis to explore the direction and magnitude of the causal relationship between viral infection and glioma. METHODS: We conducted a two-sample bidirectional MR analysis using genome-wide association study (GWAS) data. Summary statistics data of glioma were collected from the largest meta-analysis GWAS, involving 12,488 cases and 18,169 controls. Single-nucleotide polymorphisms (SNPs) associated with exposures were used as instrumental variables to estimate the causal relationship between glioma and twelve types of viral infections from corresponding GWAS data. In addition, sensitivity analyses were performed. RESULTS: After correcting for multiple tests and sensitivity analysis, we detected that genetically predicted herpes zoster (caused by Varicella zoster virus (VZV) infection) significantly decreased risk of low-grade glioma (LGG) development (OR = 0.85, 95% CI: 0.76-0.96, P = 0.01, FDR = 0.04). No causal effects of the other eleven viral infections on glioma and reverse causality were detected. CONCLUSIONS: This is one of the first and largest studies in this field. We show robust evidence supporting that genetically predicted herpes zoster caused by VZV infection reduces risk of LGG. The findings of our research advance understanding of the etiology of glioma.


Asunto(s)
Glioma , Herpes Zóster , Virosis , Humanos , Estudio de Asociación del Genoma Completo , Glioma/epidemiología , Glioma/genética , Análisis de la Aleatorización Mendeliana
6.
Heliyon ; 9(7): e17601, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456028

RESUMEN

Glioblastoma multiforme (GBM) is the most common and primary brain tumor with poor prognosis. They are removed by following tedious and life threatening surgeries. GBM stem cells (GSCs) are the main source of tumor recurrence after surgery. Hence, drugs are designed to overcome the recurrent glioblastoma malignant cells. Currently used chemotherapies are not cost effective as well as bear resistance. New and effective chemotherapeutic compounds are developed to overcome the intrinsic and acquired resistance. Dicoumarol derivative 3,3'-[(4-methoxyphenyl)methanediyl]bis(4-hydroxy-2Hchromen-2-one) (HL) and its triethylammonium salt triethylammonium3-[(4-methoxyphenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]-2-oxo-2H-chromen-4-olate (L) were synthesized and characterized using spectral and analytical techniques. The deprotonated compound L was further studied structurally using single crystal analysis. Cytotoxic studies against human glioblastoma cells A172 and LN229 were investigated both dose and time dependently and compared with the cytotoxicity of normal human astrocytes (NHA). The IC50 value of HL against A172 was found to be lying within the range 2.68-0.95 µM whereas against LN229 the range was found to be 9.55-0.85 µM. Similarly, the compound L revealed range of 1.9-0.271 µM against A172 and 1.2-0.27 µM against LN229. Cell cycle arrest was observed in GBM cells treated with L compared to the control group, which suggested that L may trigger apoptosis in GBM cells according to cytotoxicity and flow cytometry results. The antioxidant activity of synthesized compounds was also investigated using DPPH free radicals.

7.
Nat Med ; 29(6): 1370-1378, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37188783

RESUMEN

Immune-mediated anti-tumoral responses, elicited by oncolytic viruses and augmented with checkpoint inhibition, may be an effective treatment approach for glioblastoma. Here in this multicenter phase 1/2 study we evaluated the combination of intratumoral delivery of oncolytic virus DNX-2401 followed by intravenous anti-PD-1 antibody pembrolizumab in recurrent glioblastoma, first in a dose-escalation and then in a dose-expansion phase, in 49 patients. The primary endpoints were overall safety and objective response rate. The primary safety endpoint was met, whereas the primary efficacy endpoint was not met. There were no dose-limiting toxicities, and full dose combined treatment was well tolerated. The objective response rate was 10.4% (90% confidence interval (CI) 4.2-20.7%), which was not statistically greater than the prespecified control rate of 5%. The secondary endpoint of overall survival at 12 months was 52.7% (95% CI 40.1-69.2%), which was statistically greater than the prespecified control rate of 20%. Median overall survival was 12.5 months (10.7-13.5 months). Objective responses led to longer survival (hazard ratio 0.20, 95% CI 0.05-0.87). A total of 56.2% (95% CI 41.1-70.5%) of patients had a clinical benefit defined as stable disease or better. Three patients completed treatment with durable responses and remain alive at 45, 48 and 60 months. Exploratory mutational, gene-expression and immunophenotypic analyses revealed that the balance between immune cell infiltration and expression of checkpoint inhibitors may potentially inform on response to treatment and mechanisms of resistance. Overall, the combination of intratumoral DNX-2401 followed by pembrolizumab was safe with notable survival benefit in select patients (ClinicalTrials.gov registration: NCT02798406).


Asunto(s)
Glioblastoma , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Glioblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
8.
Neurooncol Adv ; 5(1): vdad032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37114244

RESUMEN

Background: Medulloblastoma in adults is rare and treatment decisions are largely driven from pediatric literature. We sought to characterize recurrent medulloblastoma in adults. Methods: From a single-institution dataset of 200 adult patients diagnosed with medulloblastoma during 1978-2017, those with recurrence were analyzed for clinical features, treatment, and outcome. Results: Of the 200 patients, 82 (41%) with median age of 29 years (18-59) had recurrence after a median follow-up time of 8.4 years (95% CI = 7.1, 10.3). Of these, 30 (37%) were standard-risk, 31 (38%) were high-risk, and 21 (26%) had unknown-risk diseases at the time of initial diagnosis. Forty-eight (58%) presented with recurrence outside the posterior fossa, of whom 35 (43%) had distant recurrence only. Median Progression-free survival (PFS) and OS from initial surgery were 33.5 and 62.4 months, respectively. Neither PFS nor OS from initial diagnosis differed between the standard-risk and high-risk groups in those who experience recurrence (P = .505 and .463, respectively). Median OS from first recurrence was 20.3 months, also with no difference between the standard-risk and high-risk groups (P = .518). Recurrences were treated with combinations of re-resection (20 patients; 25%), systemic chemotherapy (61 patients; 76%), radiation (29 patients; 36%), stem cell transplant (6 patients; 8%), and intrathecal chemotherapy (4 patients; 5%). Patients who received radiation at recurrence had better OS (32.9 months) than those who did not (19.2 months) (P = .034). Conclusions: Recurrent medulloblastoma in adults has a poor prognosis irrespective of initial risk stratification. Recurrence commonly arises outside the posterior fossa years after initial diagnosis.

9.
Neurooncol Adv ; 5(1): vdad009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968288

RESUMEN

Glioblastoma (GBM) tumor microenvironment (TME) is a highly heterogeneous and complex system, which in addition to cancer cells, consists of various resident brain and immune cells as well as cells in transit through the tumor such as marrow-derived immune cells. The TME is a dynamic environment which is heavily influenced by alterations in cellular composition, cell-to-cell contact and cellular metabolic products as well as other chemical factors, such as pH and oxygen levels. Emerging evidence suggests that GBM cells appear to reprogram their the TME, and hijack microenvironmental elements to facilitate rapid proliferation, invasion, migration, and survival thus generating treatment resistance. GBM cells interact with their microenvironment directly through cell-to-cell by interaction mediated by cell-surface molecules, or indirectly through apocrine or paracrine signaling via cytokines, growth factors, and extracellular vehicles. The recent discovery of neuron-glioma interfaces and neurotransmitter-based interactions has uncovered novel mechanisms that favor tumor cell survival and growth. Here, we review the known and emerging evidence related to the communication between GBM cells and various components of its TME, discuss models for studying the TME and outline current studies targeting components of the TME for therapeutic purposes.

10.
Cancers (Basel) ; 15(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831427

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T cells have recently been demonstrated to extract and express cognate tumor antigens through trogocytosis. This process may contribute to tumor antigen escape, T cell exhaustion, and fratricide, which plays a central role in CAR dysfunction. We sought to evaluate the importance of this effect in epidermal growth factor receptor variant III (EGFRvIII) specific CAR T cells targeting glioma. METHODS: EGFRvIII-specific CAR T cells were generated from various donors and analyzed for cytotoxicity, trogocytosis, and in vivo therapeutic activity against intracranial glioma. Tumor autophagy resulting from CAR T cell activity was evaluated in combination with an autophagy inducer (verteporfin) or inhibitor (bafilomycin A1). RESULTS: CAR T cell products derived from different donors induced markedly divergent levels of trogocytosis of tumor antigen as well as PD-L1 upon engaging target tumor cells correlating with variability in efficacy in mice. Pharmacological facilitation of CAR induced-autophagy with verteporfin inhibits trogocytic expression of tumor antigen on CARs and increases CAR persistence and efficacy in mice. CONCLUSION: These data propose CAR-induced autophagy as a mechanism counteracting CAR-induced trogocytosis and provide a new strategy to innovate high-performance CARs through pharmacological facilitation of T cell-induced tumor death.

12.
J Natl Compr Canc Netw ; 21(1): 12-20, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634606

RESUMEN

The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of the following adult CNS cancers: glioma (WHO grade 1, WHO grade 2-3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2-4 IDH-mutant astrocytoma, WHO grade 4 glioblastoma), intracranial and spinal ependymomas, medulloblastoma, limited and extensive brain metastases, leptomeningeal metastases, non-AIDS-related primary CNS lymphomas, metastatic spine tumors, meningiomas, and primary spinal cord tumors. The information contained in the algorithms and principles of management sections in the NCCN Guidelines for CNS Cancers are designed to help clinicians navigate through the complex management of patients with CNS tumors. Several important principles guide surgical management and treatment with radiotherapy and systemic therapy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least annually to review comments from reviewers within their institutions, examine relevant new data from publications and abstracts, and reevaluate and update their recommendations. These NCCN Guidelines Insights summarize the panel's most recent recommendations regarding molecular profiling of gliomas.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Adulto , Humanos , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Sistema Nervioso Central , Mutación
13.
medRxiv ; 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38234840

RESUMEN

Glioblastoma (GBM) is a primary brain cancer with an abysmal prognosis and few effective therapies. The ability to investigate the tumor microenvironment before and during treatment would greatly enhance both understanding of disease response and progression, as well as the delivery and impact of therapeutics. Stereotactic biopsies are a routine surgical procedure performed primarily for diagnostic histopathologic purposes. The role of investigative biopsies - tissue sampling for the purpose of understanding tumor microenvironmental responses to treatment using integrated multi-modal molecular analyses ('Multi-omics") has yet to be defined. Secondly, it is unknown whether comparatively small tissue samples from brain biopsies can yield sufficient information with such methods. Here we adapt stereotactic needle core biopsy tissue in two separate patients. In the first patient with recurrent GBM we performed highly resolved multi-omics analysis methods including single cell RNA sequencing, spatial-transcriptomics, metabolomics, proteomics, phosphoproteomics, T-cell clonotype analysis, and MHC Class I immunopeptidomics from biopsy tissue that was obtained from a single procedure. In a second patient we analyzed multi-regional core biopsies to decipher spatial and genomic variance. We also investigated the utility of stereotactic biopsies as a method for generating patient derived xenograft models in a separate patient cohort. Dataset integration across modalities showed good correspondence between spatial modalities, highlighted immune cell associated metabolic pathways and revealed poor correlation between RNA expression and the tumor MHC Class I immunopeptidome. In conclusion, stereotactic needle biopsy cores are of sufficient quality to generate multi-omics data, provide data rich insight into a patient's disease process and tumor immune microenvironment and can be of value in evaluating treatment responses. One sentence summary: Integrative multi-omics analysis of stereotactic needle core biopsies in glioblastoma.

14.
medRxiv ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38234786

RESUMEN

Congenital DNA mismatch repair defects (dMMR), such as Lynch Syndrome, predispose patients to a variety of cancers and account for approximately 1% of glioblastoma cases. While few therapeutic options exist for glioblastoma, checkpoint blockade therapy has proven effective in dMMR tumors. Here we present a case study of a male in their 30s diagnosed with dMMR glioblastoma treated with pembrolizumab who experienced a partial response to therapy. Using a multiplex IHC analysis pipeline on archived slide specimens from tumor resections at diagnosis and after therapeutic interventions, we quantified changes in the frequency and spatial distribution of key cell populations in the tumor tissue. Notably, proliferating (KI67+) macrophages and T cells increased in frequency as did other KI67+ cells within the tumor. Therapeutic intervention remodeled the cellular spatial distribution in the tumor leading to a greater frequency of macrophage/tumor cell interactions and T cell/T cell interactions, highlighting impacts of checkpoint blockade on tumor cytoarchitecture and revealing spatial patterns that may indicate advantageous immune interactions in glioma and other solid tumors treated with these agents.

15.
Neurooncol Adv ; 4(1): vdac129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36128585

RESUMEN

Background: Primary spinal high-grade gliomas (S-HGG) are rare aggressive tumors; radiation therapy (RT) often plays a dominant role in management. We conducted a single-institution retrospective review to study the clinicopathological features and management of S-HGGs. Methods: Patients with biopsy-proven S-HGG who received RT from 2001 to 2020 were analyzed for patient, tumor, and treatment characteristics. Kaplan-Meier estimates were used for survival analyses. Results: Twenty-nine patients were identified with a median age of 25.9 years (range 1-74 y). Four patients had GTR while 25 underwent subtotal resection or biopsy. All patients were IDH wildtype and MGMT-promoter unmethylated, where available. H3K27M mutation was present in 5 out of 10 patients tested, while one patient harbored p53 mutation. Median RT dose was 50.4 Gy (range 39.6-54 Gy) and 65% received concurrent chemotherapy, most commonly temozolomide. Twenty-three (79%) of patients had documented recurrence. Overall, 16 patients relapsed locally, 10 relapsed in the brain and 8 developed leptomeningeal disease; only 8 had isolated local relapse. Median OS from diagnosis was 21.3 months and median PFS was 9.7 months. On univariate analysis, age, gender, GTR, grade, RT modality, RT dose and concurrent chemotherapy did not predict for survival. Patients with H3K27M mutation had a poorer PFS compared to those without mutation (10.1 m vs 45.1 m) but the difference did not reach statistical significance (P = .26). Conclusions: The prognosis of patients with spinal HGGs remains poor with two-thirds of the patients developing distant recurrence despite chemoradiation. Survival outcomes were similar in patients ≤ 29 years compared to adults > 29 years. A better understanding of the molecular drivers of spinal HGGs is needed to develop more effective treatment options.

16.
Clin Cancer Res ; 28(11): 2270-2277, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35344029

RESUMEN

PURPOSE: FGFR genomic alterations (amplification, mutations, and/or fusions) occur in ∼8% of gliomas, particularly FGFR1 and FGFR3. We conducted a multicenter open-label, single-arm, phase II study of a selective FGFR1-3 inhibitor, infigratinib (BGJ398), in patients with FGFR-altered recurrent gliomas. PATIENTS AND METHODS: Adults with recurrent/progressive gliomas harboring FGFR alterations received oral infigratinib 125 mg on days 1 to 21 of 28-day cycles. The primary endpoint was investigator-assessed 6-month progression-free survival (PFS) rate by Response Assessment in Neuro-Oncology criteria. Comprehensive genomic profiling was performed on available pretreatment archival tissue to explore additional molecular correlations with efficacy. RESULTS: Among 26 patients, the 6-month PFS rate was 16.0% [95% confidence interval (CI), 5.0-32.5], median PFS was 1.7 months (95% CI, 1.1-2.8), and objective response rate was 3.8%. However, 4 patients had durable disease control lasting longer than 1 year. Among these, 3 had tumors harboring activating point mutations at analogous positions of FGFR1 (K656E; n = 2) or FGFR3 (K650E; n = 1) in pretreatment tissue; an FGFR3-TACC3 fusion was detected in the other. Hyperphosphatemia was the most frequently reported treatment-related adverse event (all-grade, 76.9%; grade 3, 3.8%) and is a known on-target toxicity of FGFR inhibitors. CONCLUSIONS: FGFR inhibitor monotherapy with infigratinib had limited efficacy in a population of patients with recurrent gliomas and different FGFR genetic alterations, but durable disease control lasting more than 1 year was observed in patients with tumors harboring FGFR1 or FGFR3 point mutations or FGFR3-TACC3 fusions. A follow-up study with refined biomarker inclusion criteria and centralized FGFR testing is warranted.


Asunto(s)
Glioma , Recurrencia Local de Neoplasia , Adulto , Estudios de Seguimiento , Glioma/tratamiento farmacológico , Glioma/genética , Humanos , Proteínas Asociadas a Microtúbulos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Compuestos de Fenilurea , Inhibidores de Proteínas Quinasas/efectos adversos , Pirimidinas , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética
17.
Clin Cancer Res ; 28(9): 1979-1990, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140124

RESUMEN

PURPOSE: Proficient DNA repair by homologous recombination (HR) facilitates resistance to chemoradiation in glioma stem cells (GSC). We evaluated whether compromising HR by targeting HSP90, a molecular chaperone required for the function of key HR proteins, using onalespib, a long-acting, brain-penetrant HSP90 inhibitor, would sensitize high-grade gliomas to chemoradiation in vitro and in vivo. EXPERIMENTAL DESIGN: The ability of onalespib to deplete HR client proteins, impair HR repair capacity, and sensitize glioblastoma (GBM) to chemoradiation was evaluated in vitro in GSCs, and in vivo using zebrafish and mouse intracranial glioma xenograft models. The effects of HSP90 inhibition on the transcriptome and cytoplasmic proteins was assessed in GSCs and in ex vivo organotypic human glioma slice cultures. RESULTS: Treatment with onalespib depleted CHK1 and RAD51, two key proteins of the HR pathway, and attenuated HR repair, sensitizing GSCs to the combination of radiation and temozolomide (TMZ). HSP90 inhibition reprogrammed the transcriptome of GSCs and broadly altered expression of cytoplasmic proteins including known and novel client proteins relevant to GSCs. The combination of onalespib with radiation and TMZ extended survival in a zebrafish and a mouse xenograft model of GBM compared with the standard of care (radiation and TMZ) or onalespib with radiation. CONCLUSIONS: The results of this study demonstrate that targeting HR by HSP90 inhibition sensitizes GSCs to radiation and chemotherapy and extends survival in zebrafish and mouse intracranial models of GBM. These results provide a preclinical rationale for assessment of HSP90 inhibitors in combination with chemoradiation in patients with GBM.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Antineoplásicos/farmacología , Benzamidas , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Reparación del ADN , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/radioterapia , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Isoindoles , Ratones , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
18.
Clin Cancer Res ; 28(4): 585-593, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34561270

RESUMEN

Immunotherapy has revolutionized treatment for many hard-to-treat cancers but has yet to produce significant improvement in outcomes for patients with glioblastoma. This reflects the multiple and unique mechanisms of immune evasion and escape in this highly heterogeneous tumor. Glioblastoma engenders profound local and systemic immunosuppression and is remarkably effective at inducing T-cell dysfunction, posing a challenge to any immunotherapy-based approach. To overcome these mechanisms, multiple disparate modes of immune-oriented therapy will be required. However, designing trials that can evaluate these combinatorial approaches requires careful consideration. In this review, we explore the immunotherapy resistance mechanisms that have been encountered to date and how combinatorial approaches may address these. We also describe the unique aspects of trial design in both preclinical and clinical settings and consider endpoints and markers of response best suited for an intervention involving multiple agents.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos , Tolerancia Inmunológica , Terapia de Inmunosupresión , Inmunoterapia
19.
Neuro Oncol ; 24(2): 229-244, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34260721

RESUMEN

BACKGROUND: Tumor-specific metabolic processes essential for cell survival are promising targets to potentially circumvent intratumoral heterogeneity, a major resistance factor in gliomas. Tumor cells preferentially using nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway for synthesis of NAD, a critical cofactor for diverse biological processes including cellular redox reactions, energy metabolism, and biosynthesis. NAMPT is overexpressed in most malignancies, including gliomas, and can serve as a tumor-specific target. METHODS: Effects of pharmacological inhibition of NAMPT on cellular oxygen consumption rate, extracellular acidification, mitochondrial respiration, cell proliferation, invasion, and survival were assessed through in vitro and ex vivo studies on genetically heterogeneous glioma cell lines, glioma stem-like cells (GSCs), and mouse and human ex vivo organotypic glioma slice culture models. RESULTS: Pharmacological inhibition of the NAD salvage biosynthesis pathway using a highly specific inhibitor, KPT-9274, resulted in the reduction of NAD levels and related downstream metabolites, inhibited proliferation, and induced apoptosis in vitro in cell lines and ex vivo in human glioma tissue. These effects were mediated by mitochondrial dysfunction, DNA damage, and increased oxidative stress leading to apoptosis in GSCs independent of genotype, IDH status, or MGMT promoter methylation status. Conversely, NAMPT inhibition had minimal in vitro effects on normal human astrocytes (NHA) and no apparent in vivo toxicity in non-tumor-bearing mice. CONCLUSIONS: Pharmacological NAMPT inhibition by KPT9274 potently targeted genetically heterogeneous gliomas by activating mitochondrial dysfunction. Our preclinical results provide a rationale for targeting the NAMPT-dependent alternative NAD biosynthesis pathway as a novel clinical strategy against gliomas.


Asunto(s)
Glioma , NAD , Animales , Línea Celular Tumoral , Citocinas/metabolismo , Glioma/tratamiento farmacológico , Humanos , Ratones , NAD/metabolismo , Niacinamida , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Estrés Oxidativo
20.
Curr Treat Options Oncol ; 22(11): 105, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613491

RESUMEN

OPINION STATEMENT: Molecular heterogeneity has confounded attempts to target individual pathways in brain tumors. However, gliomas with BRAF mutations have been identified as being uniquely vulnerable to targeted therapies. Such mutations are predominantly seen in brain tumors of the adolescent and young adult population. Given that accurate and timely identification of such mutations is essential for offering appropriate treatment, treatment centers should offer both immunohistochemical and sequencing methods for detection of these mutations to guide treatment. Additional studies of these tumors at recurrence would also allow identification of breakthrough resistance mechanisms that may also be targetable for treatment. Due to the relative rarity of these tumors, multicenter collaborative studies will be essential in achieving long term control of these tumors.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Terapia Molecular Dirigida , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Alelos , Sustitución de Aminoácidos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/mortalidad , Ensayos Clínicos como Asunto , Diagnóstico Diferencial , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Resistencia a Antineoplásicos/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Terapia Molecular Dirigida/efectos adversos , Terapia Molecular Dirigida/métodos , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/química , Retratamiento , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...