Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(5): e97736, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24840036

RESUMEN

Neurons innervating peripheral tissues display complex responses to peripheral nerve injury. These include the activation and suppression of a variety of signalling pathways that together influence regenerative growth and result in more or less successful functional recovery. However, these responses can be offset by pathological consequences including neuropathic pain. Calcium signalling plays a major role in the different steps occurring after nerve damage. As part of our studies to unravel the roles of injury-induced molecular changes in dorsal root ganglia (DRG) neurons during their regeneration, we show that the calcium calmodulin kinase CaMK1a is markedly induced in mouse DRG neurons in several models of mechanical peripheral nerve injury, but not by inflammation. Intrathecal injection of NRTN or GDNF significantly prevents the post-traumatic induction of CaMK1a suggesting that interruption of target derived factors might be a starter signal in this de novo induction. Inhibition of CaMK signalling in injured DRG neurons by pharmacological means or treatment with CaMK1a siRNA resulted in decreased velocity of neurite growth in vitro. Altogether, the results suggest that CaMK1a induction is part of the intrinsic regenerative response of DRG neurons to peripheral nerve injury, and is thus a potential target for therapeutic intervention to improve peripheral nerve regeneration.


Asunto(s)
Señalización del Calcio/fisiología , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Ganglios Espinales/citología , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Animales , Axotomía , Señalización del Calcio/genética , Ganglios Espinales/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Neuritas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Nervio Ciático/cirugía
2.
PLoS One ; 7(1): e29852, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22253804

RESUMEN

Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Nociceptores/patología , Péptidos/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Transducción de Señal , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Animales Recién Nacidos , Axotomía , Regulación hacia Abajo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ligandos , Mecanorreceptores/metabolismo , Mecanorreceptores/patología , Ratones , Ratones Endogámicos C57BL , Nociceptores/enzimología , Subunidades de Proteína/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor trkB/metabolismo , Nervio Ciático/metabolismo , Nervio Ciático/patología , Nervio Ciático/cirugía , ATPasa Intercambiadora de Sodio-Potasio/genética
3.
Glia ; 58(16): 1977-87, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20830809

RESUMEN

Growing evidence indicates that collagens perform crucial functions during the development and organization of the nervous system. Collagen XXVIII is a recently discovered collagen almost exclusively expressed in the peripheral nervous system (PNS). In this study, we show that this collagen is associated with nonmyelinated regions of the PNS. With the notable exception of type II terminal Schwann cell in the hairy skin, collagen XXVIII surrounds all nonmyelinating glial cells studied. This includes satellite glial cells of the dorsal root ganglia, terminal Schwann cells type I around mechanoceptors in the skin, terminal Schwann cells around proprioceptors in the muscle spindle or at the neuromuscular junction and olfactory ensheathing cells. Collagen XXVIII is also detected at nodes of Ranvier where the myelin sheath of myelinated fibers is interrupted and is thus a distinctive component of the PNS nodal gap. The correlation between the absence of myelin and the presence of collagen XXVIII is confirmed in a mouse model of Charcot-Marie-Tooth characterized by dysmyelinated nerve fibers, in which enhancement of collagen XXVIII labeling is observed.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/fisiopatología , Colágeno/genética , Sistema Nervioso Periférico/fisiología , Nódulos de Ranvier/fisiología , Células Satélites Perineuronales/fisiología , Células de Schwann/fisiología , Animales , Membrana Basal/fisiología , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/patología , Colágeno/metabolismo , Ganglios Espinales/citología , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas Amielínicas/fisiología , Células Satélites Perineuronales/citología , Células de Schwann/citología
4.
Neuron ; 64(6): 857-70, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20064392

RESUMEN

Low-threshold mechanoreceptor neurons (LTMs) of the dorsal root ganglia (DRG) are essential for touch sensation. They form highly specialized terminations in the skin and display stereotyped projections in the spinal cord. Functionally defined LTMs depend on neurotrophin signaling for their postnatal survival and functioning, but how these neurons arise during development is unknown. Here, we show that specific types of LTMs can be identified shortly after DRG genesis by unique expression of the MafA transcription factor, the Ret receptor and coreceptor GFRalpha2, and find that their specification is Ngn2 dependent. In mice lacking Ret, these LTMs display early differentiation defects, as revealed by reduced MafA expression, and at later stages their central and peripheral projections are compromised. Moreover, in MafA mutants, a discrete subset of LTMs display altered expression of neurotrophic factor receptors. Our results provide evidence that genetic interactions involving Ret and MafA progressively promote the differentiation and diversification of LTMs.


Asunto(s)
Ganglios Espinales/metabolismo , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Mecanorreceptores/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Células Receptoras Sensoriales/metabolismo , Tacto/fisiología , Vías Aferentes/citología , Vías Aferentes/embriología , Vías Aferentes/metabolismo , Animales , Diferenciación Celular/genética , Ganglios Espinales/citología , Ganglios Espinales/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Mecanorreceptores/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación/genética , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Neurogénesis/genética , Proteínas Proto-Oncogénicas c-ret/genética , Células Receptoras Sensoriales/citología , Umbral Sensorial/fisiología , Transducción de Señal/genética
5.
J Comp Neurol ; 507(4): 1588-601, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18220257

RESUMEN

Dorsal root ganglia (DRG) neurons exhibit a wide molecular heterogeneity in relation to the various sensory modalities (mechanoception, thermoception, nociception) that they subserve. Finding markers of subpopulations is an important step in understanding how these neurons convey specific information. We identified fibroblast growth factor homologous factor 1 (FHF1) in a search for markers of subpopulations of DRG neurons. FHFs constitute a family of four factors that share some structural properties with fibroblast growth factors (FGFs) but are functionally distinct. They are expressed in specific subsets of neurons and are involved in the modulation of sodium channel activity. The pattern of expression of FHF1 in the DRG was determined during development, in the adult and after axotomy. We show that in the adult, FHF1 is expressed in two populations, one composed of nociceptors and another in which no neurotrophic factor receptors were detected (panTrk-/c-Ret-). Interestingly, in the nociceptors, FHF1 expression was restricted to a subset of TrkA+/calcitonin gene-related peptide (CGRP)-positive neurons. Neurofilament 200 (NF-200) and peripherin labeling indicates that 70% of the FHF1-expressing neurons contribute to A-fibers and 30% to C-fibers. FHF1 interacts with the Na(v)1.9 sodium channel isoform, which is strongly expressed in cRet+/isolectin-B4 binding neurons, but we show that FHF1 is not expressed in the cRet+/IB4+ subclass and that it does not colocalize with Na(v)1.9. Our results argue strongly against the possibility that FHF1 has a modulatory effect on this channel in cRet+/IB4+ neurons, but FHF1 could play a role in a distinct subset of TrkA+/CGRP+ nociceptors.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/biosíntesis , Factores de Crecimiento de Fibroblastos/biosíntesis , Ganglios Espinales/metabolismo , Neuronas/metabolismo , Nociceptores/metabolismo , Animales , Axotomía , Western Blotting , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.9 , Neuropéptidos/metabolismo , ARN Mensajero/análisis , Receptor trkA/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/metabolismo
6.
Stem Cells ; 25(2): 340-53, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17053213

RESUMEN

Neural stem cells cultured with fibroblast growth factor 2 (FGF2)/epidermal growth factor (EGF) generate clonal expansions called neurospheres (NS), which are widely used for therapy in animal models. However, their cellular composition is still poorly defined. Here, we report that NS derived from several embryonic and adult central nervous system (CNS) regions are composed mainly of remarkable cells coexpressing radial glia markers (BLBP, RC2, GLAST), oligodendrogenic/neurogenic factors (Mash1, Olig2, Nkx2.2), and markers that in vivo are typical of the oligodendrocyte lineage (NG2, A2B5, PDGFR-alpha). On NS differentiation, the latter remain mostly expressed in neurons, together with Olig2 and Mash1. Using cytometry, we show that in growing NS the small population of multipotential self-renewing NS-forming cells are A2B5(+) and NG2(+). Additionally, we demonstrate that these NS-forming cells in the embryonic spinal cord were initially NG2(-) and rapidly acquired NG2 in vitro. NG2 and Olig2 were found to be rapidly induced by cell culture conditions in spinal cord neural precursor cells. Olig2 expression was also induced in astrocytes and embryonic peripheral nervous system (PNS) cells in culture after EGF/FGF treatment. These data provide new evidence for profound phenotypic modifications in CNS and PNS neural precursor cells induced by culture conditions.


Asunto(s)
Antígenos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Nervioso Central/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Sistema Nervioso Periférico/citología , Fenotipo , Proteoglicanos/metabolismo , Células Madre/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos/citología , Gangliósidos/metabolismo , Regulación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteína Homeobox Nkx-2.2 , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Transcripción SOX9 , Médula Espinal/citología , Médula Espinal/embriología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
7.
Cell Calcium ; 40(4): 383-91, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16769113

RESUMEN

The non-genomic role of neuroactive steroids on [Ca2+]i transients induced by GABA receptor activation was investigated in cultured dorsal root ganglia (DRG) neurones at embryonic stage E13. [Ca2+]i measurements were performed with Fura-2 fast fluorescence microfluorimetry. Application of the GABAA receptor agonist muscimol (Musci) evoked an increase in [Ca2+]i, confirming the excitatory effect of GABA at this embryonic stage. The muscimol-induced [Ca2+]i response was inhibited by progesterone (Proges) and its primary metabolite allopregnanolone (Allo) in a rapid, reversible and dose-dependent manner. These calcium transients were suppressed in the absence of external Ca2+ or in the presence of Ni2+ + Cd2+ suggesting an involvement of voltage-activated Ca2+ channels. In contrast, none of these steroids affected the resting [Ca2+]i nor exhibited any inhibitory effect on 50 mM KCl-induced [Ca2+]i increases. In view of the well-established potentiation of GABAA receptor by direct binding of neurosteroids, the inhibitory effects described in this study seem to involve distinct mechanisms. This new inhibitory effect of progesterone is observed at low and physiological concentrations, is rapid and independent of RU38486, an antagonist of the classic progesterone receptor, probably involving a membrane receptor. Using RT-PCR, we demonstrated the expression of progesterone receptor membrane component 1 (Pgrmc1), encoding 25-Dx, a membrane-associated progesterone binding protein in DRG neurones at different stages of development. In conclusion, we describe for the first time a rapid effect of progestins on embryonic DRG neurones involving an antagonistic effect of progesterone and allopregnanolone on GABAA receptors.


Asunto(s)
Calcio/metabolismo , Embrión de Mamíferos/citología , Ganglios Espinales/citología , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Pregnanolona/farmacología , Progesterona/farmacología , Animales , Bloqueadores de los Canales de Calcio/metabolismo , Células Cultivadas , Quelantes/metabolismo , Colorantes Fluorescentes/metabolismo , Fura-2/metabolismo , Agonistas del GABA/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Muscimol/metabolismo , Neuronas Aferentes/citología , Bloqueadores de los Canales de Potasio/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Bloqueadores de los Canales de Sodio/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
Mol Cell Neurosci ; 32(3): 217-29, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16769221

RESUMEN

In order to shed light on transcriptional networks involved in adult peripheral nerve repair program, we propose for the first time an organization of the transcriptional dynamics of the mouse dorsal root ganglia (DRG) following a sciatic nerve lesion. This was done by a non-hierarchical bioinformatical clustering of four Serial Analysis of Gene Expression libraries performed on DRG at embryonic day E13, neonatal day P0, adult and adult 3 days post-sciatic nerve section. Grouping genes according to their expression profiles shows that a combination of down-regulation of genes expressed at the adult stages, re-expression of embryonic genes and induction of a set of de novo genes takes place in injured neurons. Focusing on this latter event highlights Ddit3, Timm8b and Oazin as potential new injury-induced molecular actors involved in a stress response pathway. Their association with the traumatic state was confirmed by real-time PCR and in situ hybridization investigations. Clustering analysis allows us to distinguish developmental re-programming events from nerve-injury-induced processes and thus provides a basis for molecular understanding of transcriptional alterations taking place in the DRG after a sciatic nerve lesion.


Asunto(s)
Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/lesiones , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Neuropatía Ciática/genética , Animales , Ganglios Espinales/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Traumatismos de los Nervios Periféricos , Nervios Periféricos/crecimiento & desarrollo , Nervios Periféricos/metabolismo , Neuropatía Ciática/metabolismo , Factores de Tiempo
9.
Cell Calcium ; 39(3): 237-46, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16324742

RESUMEN

Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) control the setting up of the neuro-muscular synapse in vitro and probably in vivo. Dissociated cultures of purified embryonic (E15) rat motoneurons were used to explore the molecular mechanisms by which endoplasmic reticulum Ca(2+) stores, via both ryanodine-sensitive and IP(3)-sensitive intracellular Ca(2+) channels control [Ca(2+)](i) homeostasis in these neurons during ontogenesis. Fura-2 microspectrofluorimetry monitorings in single neurons showed that caffeine-induced responses of [Ca(2+)](i) increased progressively from days 1-7 in culture. These responses were blocked by ryanodine and nicardipine but not by omega-conotoxin-GVIA or omega-conotoxin-MVIIC suggesting a close functional relationship between ryanodine-sensitive and L-type Ca(v)1 Ca(2+) channels. Moreover, after 6 days in vitro, neurons exhibited spontaneous or caffeine-induced Ca(2+) oscillations that were attenuated by nicardipine. In 1-day-old neurons, both thapsigargin or CPA, which deplete Ca(2+) stores from the endoplasmic reticulum, induced an increase in [Ca(2+)](i) in 75% of the neurons tested. The number of responding motoneurons declined to 25% at 5-6 days in vitro. Xestospongin-C, a membrane-permeable IP(3) receptor inhibitor blocked the CPA-induced [Ca(2+)](i) response in all stages. RT-PCR studies investigating the expression pattern of RYR and IP(3) Ca(2+) channels isoforms confirmed the presence of their different isoforms and provided evidence for a specific pattern of development for RYR channels during the first week in vitro. Taken together, present results show that the control of motoneuronal [Ca(2+)](i) homeostasis is developmentally regulated and suggest the presence of an intracellular ryanodine-sensitive Ca(2+) channel responsible for a Ca(2+)-induced Ca(2+) release in embryonic motoneurons following voltage-dependent Ca(2+) entry via L-type Ca(2+) channels.


Asunto(s)
Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Neuronas Motoras/fisiología , Animales , Cafeína/farmacología , Canales de Calcio/biosíntesis , Canales de Calcio Tipo L/fisiología , Femenino , Indoles/farmacología , Receptores de Inositol 1,4,5-Trifosfato , Compuestos Macrocíclicos , Neuronas Motoras/efectos de los fármacos , Oxazoles/farmacología , Embarazo , Isoformas de Proteínas/biosíntesis , Ratas , Receptores Citoplasmáticos y Nucleares/biosíntesis , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Médula Espinal/citología , Médula Espinal/embriología
10.
Eur J Neurosci ; 19(4): 977-82, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15009145

RESUMEN

By regulating voltage-dependent Ca2+ influx and intracellular Ca2+ homeostasis, electrical activity plays a central role in motoneuron development. Dissociated cultures of purified embryonic rat motoneurons were used to explore the molecular mechanisms by which Ca2+ influx control [Ca2+]i transients in these neurons. Thapsigargin (250 nm) and cyclopiazonic acid (10 micro m), which deplete Ca2+ stores in the endoplasmic reticulum, decrease by 30% the depolarization-induced [Ca2+]i transients in motoneurons without affecting voltage-activated calcium currents. This thapsigargin-sensitive intracellular Ca2+ pool differs from other previous described Ca2+ stores that are sensitive to ryanodine or caffeine, inositol triphosphate, insulin and from mitochondrial Ca2+ pools. Thapsigargin affected the Cav2.1 P-type Ca2+ channel component of the depolarization-induced [Ca2+]i transient in motoneurons but spared [Ca2+]i transient induced by Cav1 L-type and Cav2.2 N-type Ca2+ channel components, suggesting a close functional relationship between Cav2.1 subunit and this unique thapsigargin-sensitive Ca2+ store. Altogether the present results demonstrate a new pathway, used by embryonic motoneurons, to regulate Ca2+ signalling through voltage-activated (Cav2.1) Ca2+ channels.


Asunto(s)
Canales de Calcio Tipo P/metabolismo , Calcio/metabolismo , Neuronas Motoras/efectos de los fármacos , Tapsigargina/farmacología , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Neuronas Motoras/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...