RESUMEN
OBJECTIVES: Serum indices included in clinical chemistry instruments are widely used by laboratories to assess the quality of samples. Instruments that report quantitative results allow an evaluation of their diagnostic performance in a similar way to other biochemical tests. The Spanish Society of Laboratory Medicine (SEQC-ML) launched a monthly External Quality program of serum indices in 2018 using three lyophilized materials of simultaneous annual distribution. We present the results of the first three years of the program. METHODS: The use of four different quality control materials with different concentrations in three alternate months allows an annual evaluation of the participant's accuracy. Assigned values are established by consensus among homogeneous groups, considering necessary at least 10 participants for a comparison at instrument level. The average percentage difference results per instrument allow the assessment of bias among groups. RESULTS: The imprecision of the three indices ranges between 3 and 9%, with no major differences among instruments. Significant differences were observed in all indices among instruments with more than 10 participants (Roche Cobas, Abbott Architect, Abbott Alinity and Siemens Advia). The 90th percentile of the distribution of percentage differences was used as the analytical performance specification (APS). An improvement in performance was observed in the first three years of the program, probably due to the learning curve effect. In 2020, APS of 7.8, 12.2 and 9.7% were proposed for hemolytic, icteric and lipemic indices, respectively. CONCLUSIONS: Serum indices have a great impact on the quality and the reliability of laboratory test results. Participation in proficiency testing programs for serum indices is helpful to encourage harmonization among providers and laboratories.
Asunto(s)
Laboratorios , Ensayos de Aptitud de Laboratorios , Humanos , Control de Calidad , Reproducibilidad de los Resultados , SueroRESUMEN
BACKGROUND: Faecal occult blood test (FOBT) has demonstrated effectiveness in colorectal cancer (CRC) screening. Faecal calprotectin (FC) has proven efficient for evaluating activity in inflammatory bowel disease (IBD), but its value in CRC detection is less established. Most symptomatic patients have benign pathologies, but still undergo colonoscopy in many settings. AIMS: To evaluate the diagnostic accuracy and cost-effectiveness of the combination of FOBT plus FC in symptomatic patients. METHODS: Patients who completed colonic investigations and returned stool samples, on which FOBT and FC were performed, were recruited prospectively. CRC, advanced adenoma, IBD and angiodysplasia were considered as relevant pathologies. RESULTS: A total of 404 patients were included, of whom 87 (21.5%) had relevant pathologies. Sensitivity and specificity were 50.6% and 69.6% for FOBT, 78.2% and 54.4% for FC. Negative predictive value (NPV) was 90.1% for FC and 86.9% for FOBT. NPV for the combination of FOBT and FC was 94.1%, with a sensitivity and specificity of 88.5% and 50.3%. The area under ROC (receiver operator curve) (AUC) was 0.741 for FOBT, 0.736 for FC and 0.816 for the combination. The total cost for visits and procedures was 233,016 (577/patient). Using a combination of FOBT and FC as pre-endoscopic tool allows colonoscopies to be reduced by 39.4%, reducing total costs by 20.5%. CONCLUSION: The combination of FOBT and FC has a better diagnostic accuracy compared with each test alone. Performing both tests before colonoscopy is a less costly and more effective strategy, reducing unnecessary procedures and complications.
RESUMEN
Soria, M, Ansón, M, Lou-Bonafonte, JM, Andrés-Otero, MJ, Puente, JJ, and Escanero, J. Fat oxidation rate as a function of plasma lipid and hormone response in endurance athletes. J Strength Cond Res 34(1): 104-113, 2020-Plasma lipid changes during incremental exercise are not well known. The aim of this study was to investigate the relationship among fat oxidation rate, plasma lipids, and hormone concentrations in well-trained athletes. Twenty-six trained triathletes completed a graded cycle ergometer test to exhaustion increasing by 0.5 W·kg every 10 minutes. Fat oxidation rates were determined using indirect calorimetry. For each individual, maximal fat oxidation (MFO), the intensity at which MFO occurred (Fatmax), and the intensity at which fat oxidation became negligible (Fatmin) were determined. Blood samples for lipids and hormones analysis were collected at the end of each stage of the graded exercise test. All variables studied except insulin showed an increase at the end of incremental protocol with respect to basal levels. Free fatty acid reached significant increase at 60%VO2max and maximal levels at 70%VO2max. Low-density lipoprotein (LDL) and triglycerides (TG) decreased and showed lowest levels at 60%VO2max and reaching significant increases after 80%VO2max. High-density lipoprotein reached significant increase at 60%VO2max. Adrenaline and noradrenaline increased until the end of the incremental exercise, and significant differences were from 50%VO2max. These results suggest that exercise intensities are related to plasma lipids levels. In the zone when lipids oxidation is maximal, plasma LDL and TG variation differs from other lipids. These results may have application for the more adequate exercise intensity prescription to maximize the beneficial effects of exercise.
Asunto(s)
Tejido Adiposo/metabolismo , Hormonas/sangre , Metabolismo de los Lípidos , Lípidos/sangre , Resistencia Física , Adulto , Atletas , Calorimetría Indirecta , Catecolaminas/sangre , Ergometría , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Ácidos Grasos no Esterificados/sangre , Humanos , Insulina/sangre , Masculino , Oxidación-Reducción , Consumo de OxígenoRESUMEN
Objectives: The stability of the analytes most commonly used in routine clinical practice has been the subject of intensive research, with varying and even conflicting results. Such is the case of alanine aminotransferase (ALT). The purpose of this study was to determine the stability of serum ALT according to different variables. Methods: A multicentric study was conducted in eight laboratories using serum samples with known initial catalytic concentrations of ALT within four different ranges, namely: <50 U/L (<0.83 µkat/L), 50-200 U/L (0.83-3.33 µkat/L), 200-400 U/L (3.33-6.67 µkat/L) and >400 U/L (>6.67 µkat/L). Samples were stored for seven days at two different temperatures using four experimental models and four laboratory analytical platforms. The respective stability equations were calculated by linear regression. A multivariate model was used to assess the influence of different variables. Results: Catalytic concentrations of ALT decreased gradually over time. Temperature (-4%/day at room temperature vs. -1%/day under refrigeration) and the analytical platform had a significant impact, with Architect (Abbott) showing the greatest instability. Initial catalytic concentrations of ALT only had a slight impact on stability, whereas the experimental model had no impact at all. Conclusions: The constant decrease in serum ALT is reduced when refrigerated. Scarcely studied variables were found to have a significant impact on ALT stability. This observation, added to a considerable inter-individual variability, makes larger studies necessary for the definition of stability equations.
RESUMEN
BACKGROUND: The stability limit of an analyte in a biological sample can be defined as the time required until a measured property acquires a bias higher than a defined specification. Many studies assessing stability and presenting recommendations of stability limits are available, but differences among them are frequent. The aim of this study was to classify and to grade a set of bibliographic studies on the stability of five common blood measurands and subsequently generate a consensus stability function. METHODS: First, a bibliographic search was made for stability studies for five analytes in blood: alanine aminotransferase (ALT), glucose, phosphorus, potassium and prostate specific antigen (PSA). The quality of every study was evaluated using an in-house grading tool. Second, the different conditions of stability were uniformly defined and the percent deviation (PD%) over time for each analyte and condition were scattered while unifying studies with similar conditions. RESULTS: From the 37 articles considered as valid, up to 130 experiments were evaluated and 629 PD% data were included (106 for ALT, 180 for glucose, 113 for phosphorus, 145 for potassium and 85 for PSA). Consensus stability equations were established for glucose, potassium, phosphorus and PSA, but not for ALT. CONCLUSIONS: Time is the main variable affecting stability in medical laboratory samples. Bibliographic studies differ in recommedations of stability limits mainly because of different specifications for maximum allowable error. Definition of a consensus stability function in specific conditions can help laboratories define stability limits using their own quality specifications.
Asunto(s)
Recolección de Muestras de Sangre/métodos , Alanina Transaminasa/sangre , Glucemia/química , Humanos , Fósforo/sangre , Potasio/sangre , Fase Preanalítica , Antígeno Prostático Específico/sangre , Estabilidad Proteica , TemperaturaRESUMEN
BACKGROUND: Preanalytical variables, such as sample collection, handling and transport, may affect patient results. Preanalytical phase quality monitoring should be established in order to minimize laboratory errors and improve patient safety. METHODS: A retrospective study (2001-2013) of the results obtained through the Spanish Society of Clinical Biochemistry and Molecular Pathology (SEQC) External quality assessment (preanalytical phase) was performed to summarize data regarding the main factors affecting preanalytical phase quality. Our aim was to compare data from 2006 to 2013 with a previously published manuscript assessing the 2001-2005 period. RESULTS: A significant decrease in rejection rates was observed both for blood and urine samples. For serum samples, the most frequent rejection causes in the first period were non-received samples (37.5%), hemolysis (29.3%) and clotted samples (14.4%). Conversely, in the second period, hemolysis was the main rejection cause (36.2%), followed by non-received samples (34.5%) and clotted samples (11.1%). For urine samples, the main rejection cause overall was a non-received sample (up to 86.1% of cases in the second period, and 81.6% in the first). For blood samples with anticoagulant, the number of rejections also decreased. While plasma-citrate-ESR still showed the highest percentages of rejections (0.980% vs. 1.473%, p<0.001), the lowest corresponded to whole-blood EDTA (0.296% vs. 0.381%, p<0.001). CONCLUSIONS: For the majority of sample types, a decrease in preanalytical errors was confirmed. Improvements in organization, implementation of standardized procedures in the preanalytical phase, and participation in a Spanish external quality assessment scheme may have notably contributed to error reduction in this phase.