Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 3(9): e508, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19721700

RESUMEN

BACKGROUND: Dengue is the most important mosquito-borne viral disease affecting humans. The only prevention measure currently available is the control of its vectors, primarily Aedes aegypti. Recent advances in genetic engineering have opened the possibility for a new range of control strategies based on genetically modified mosquitoes. Assessing the potential efficacy of genetic (and conventional) strategies requires the availability of modeling tools that accurately describe the dynamics and genetics of Ae. aegypti populations. METHODOLOGY/PRINCIPAL FINDINGS: We describe in this paper a new modeling tool of Ae. aegypti population dynamics and genetics named Skeeter Buster. This model operates at the scale of individual water-filled containers for immature stages and individual properties (houses) for adults. The biology of cohorts of mosquitoes is modeled based on the algorithms used in the non-spatial Container Inhabiting Mosquitoes Simulation Model (CIMSiM). Additional features incorporated into Skeeter Buster include stochasticity, spatial structure and detailed population genetics. We observe that the stochastic modeling of individual containers in Skeeter Buster is associated with a strongly reduced temporal variation in stage-specific population densities. We show that heterogeneity in container composition of individual properties has a major impact on spatial heterogeneity in population density between properties. We detail how adult dispersal reduces this spatial heterogeneity. Finally, we present the predicted genetic structure of the population by calculating F(ST) values and isolation by distance patterns, and examine the effects of adult dispersal and container movement between properties. CONCLUSIONS/SIGNIFICANCE: We demonstrate that the incorporated stochasticity and level of spatial detail have major impacts on the simulated population dynamics, which could potentially impact predictions in terms of control measures. The capacity to describe population genetics confers the ability to model the outcome of genetic control methods. Skeeter Buster is therefore an important tool to model Ae. aegypti populations and the outcome of vector control measures.

2.
J Chem Ecol ; 34(7): 945-58, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18415060

RESUMEN

Parasitoids respond to volatiles that plants produce when injured by herbivores. A considerable body of literature addresses the chemical pathways of herbivore-induced volatile production. However, there is almost no theory or data on how timing of volatile release in relationship to host availability for parasitization impacts the utility of these cues to parasitoids and on the extent that this volatile release timing might increase or decrease the percent of herbivores that become parasitized. This kind of information is critical in judging the benefits that might accrue from a breeding program aimed at enhancing herbivore-responsive volatile production. We developed a general model to begin examining this issue by using available parameters from two tritrophic systems. The model uses herbivore oviposition, development, and mortality rates, linked to a range of plant volatile induction and cessation periods for calculating the proportion of plants in a field that are (1) not producing volatiles but occupied by suitable herbivore hosts, (2) producing volatiles and occupied by suitable herbivore hosts, (3) producing volatiles but not occupied by suitable herbivore hosts, and (4) not producing volatiles and not occupied by suitable herbivore hosts. The impact of the plant volatiles on parasitoid foraging success is then determined by comparing the expected number of hosts parasitized when the parasitoid focuses solely on the volatile-producing plants to when it forages randomly among all plants. Under some conditions, parasitoids can attack three times more herbivores if they focus on volatile-producing plants. However, when we simulate plants that take several days to cease volatile production after pupation or death of the herbivore, parasitization rate does not increase when parasitoids use volatiles as cues. The utility of the volatile cues is consistently greater when a smaller proportion of plants is occupied by herbivores, indicating that their usefulness may be reduced to zero in fields saturated with volatiles.


Asunto(s)
Conducta Alimentaria/fisiología , Modelos Biológicos , Plantas/metabolismo , Plantas/parasitología , Animales , Interacciones Huésped-Parásitos , Lepidópteros/fisiología , Oviposición , Plantas/química , Factores de Tiempo , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...