Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968149

RESUMEN

B cell progenitor acute lymphoblastic leukemia (BCP-ALL) is the most common childhood malignancy, driven by multiple genetic alterations that cause maturation arrest and accumulation of abnormal progenitor B cells. Current treatment protocols with chemotherapy have led to favorable outcomes but are associated with significant toxicity and risk of side effects, highlighting the necessity for highly effective, less toxic, targeted drugs, even in subtypes with a favorable outcome. Here, we used multimodal single-cell sequencing to delineate the transcriptional, epigenetic, and immunophenotypic characteristics of 23 childhood BCP-ALLs, belonging to the BCR::ABL1-positive, ETV6::RUNX1-positive, high hyperdiploid, and recently discovered DUX4-rearranged (DUX4-r) subtypes. Projection of the ALL cells along the normal hematopoietic differentiation axis revealed a diversity in the maturation pattern between the different BCP-ALL subtypes. Whereas the BCR::ABL1-, ETV6::RUNX1-positive, and high hyperdiploidy cells mainly showed similarities to normal pro-B cells, the DUX4-r ALL cells also displayed transcriptional signatures resembling mature B cells. Focusing on the DUX4-r subtype, we found that the blast population displayed multilineage priming toward non-hematopoietic cells, myeloid, and T cell lineages, but also an activation of PI3K/AKT signaling that sensitized the cells to PI3K inhibition in vivo. Given the multilineage priming of the DUX4-r blasts with aberrant expression of the myeloid marker CD371 (CLL-1), we generated chimeric antigen receptor T cells, which effectively eliminated DUX4-r ALL cells in vivo. These results provide a detailed characterization of BCP-ALL at the single-cell level and reveal therapeutic vulnerabilities in the DUX4-r subtype with implications for the understanding of ALL biology and new therapeutic strategies.

2.
Hematol Oncol ; 42(3): e3281, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775115

RESUMEN

The FLT3-ITD mutation represents the most frequent genetic alteration in newly diagnosed acute myeloid leukemia (AML) patient and is associated with poor prognosis. Mutation result in the retention of a constitutively active form of this receptor in the endoplasmic reticulum (ER) and the subsequent modification of its downstream effectors. Here, we assessed the impact of such retention on ER homeostasis and found that mutant cells present lower levels of ER stress due to the overexpression of ERO1α, one of the main proteins of the protein folding machinery at the ER. Overexpression of ERO1α resulted essential for ITD mutant cells survival and chemoresistance and also played a crucial role in shaping the type of glucose metabolism in AML cells, being the mitochondrial pathway the predominant one in those with a higher ER stress (non-mutated cells) and the glycolytic pathway the predominant one in those with lower ER stress (mutated cells). Our data indicate that FLT3 mutational status dictates the route for glucose metabolism in an ERO1α depending on manner and this provides a survival advantage to tumors carrying these ITD mutations.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Retículo Endoplásmico/metabolismo , Mutación , Línea Celular Tumoral , Glicoproteínas de Membrana , Oxidorreductasas
3.
Blood Adv ; 7(18): 5382-5395, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37505194

RESUMEN

Acute myeloid leukemia (AML) is initiated and propagated by leukemia stem cells (LSCs), a self-renewing population of leukemia cells responsible for therapy resistance. Hence, there is an urgent need to identify new therapeutic opportunities targeting LSCs. Here, we performed an in vivo CRISPR knockout screen to identify potential therapeutic targets by interrogating cell surface dependencies of LSCs. The facilitated glucose transporter type 1 (GLUT1) emerged as a critical in vivo metabolic dependency for LSCs in a murine MLL::AF9-driven model of AML. GLUT1 disruption by genetic ablation or pharmacological inhibition led to suppression of leukemia progression and improved survival of mice that received transplantation with LSCs. Metabolic profiling revealed that Glut1 inhibition suppressed glycolysis, decreased levels of tricarboxylic acid cycle intermediates and increased the levels of amino acids. This metabolic reprogramming was accompanied by an increase in autophagic activity and apoptosis. Moreover, Glut1 disruption caused transcriptional, morphological, and immunophenotypic changes, consistent with differentiation of AML cells. Notably, dual inhibition of GLUT1 and oxidative phosphorylation (OXPHOS) exhibited synergistic antileukemic effects in the majority of tested primary AML patient samples through restraining of their metabolic plasticity. In particular, RUNX1-mutated primary leukemia cells displayed striking sensitivity to the combination treatment compared with normal CD34+ bone marrow and cord blood cells. Collectively, our study reveals a GLUT1 dependency of murine LSCs in the bone marrow microenvironment and demonstrates that dual inhibition of GLUT1 and OXPHOS is a promising therapeutic approach for AML.


Asunto(s)
Leucemia Mieloide Aguda , Fosforilación Oxidativa , Animales , Ratones , Apoptosis , Médula Ósea/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Leucemia Mieloide Aguda/genética , Microambiente Tumoral
4.
Blood Adv ; 7(7): 1204-1218, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36383712

RESUMEN

Mutated nucleophosmin 1 (NPM1) is the most common genetic alteration in acute myeloid leukemia (AML), found in ∼30% of cases. Although mutations in this gene are considered favorable according to current risk stratification guidelines, a large fraction of patients will experience relapse, demonstrating the urgent need for new treatment options. Therefore, we aimed to identify cell surface proteins specifically expressed on NPM1-mutated AML cells, allowing for potential targeting with antibody-based therapies. Herein, we report on an arrayed flow cytometry-based screen directed to 362 cell surface markers. In comparing the cell surface expression on NPM1-mutated AML cells with primitive (CD34+ CD38-) normal bone marrow cells, we identified the complement receptor C3AR as being specifically expressed in NPM1-mutated AML. By flow cytometry and single-cell RNA sequencing, we further show that normal hematopoietic stem and progenitor cells lack detectable C3AR gene and protein expression, making it particularly suitable as a target for antibody therapy. We also demonstrate that C3AR in combination with GPR56 distinguishes the leukemic stem cells (LSCs) in NPM1-mutated AML from the normal hematopoietic stem cells, defining the LSC population, as shown by transplantation into immunodeficient mice. Mechanistically, the stimulation of C3AR-expressing cells with C3a, the ligand of C3AR, leads to the activation of ERK1/2 and increased survival of AML cells, suggesting that this is an important signaling axis in this subtype of AML. Finally, we show that antibodies directed against C3AR efficiently elicit natural killer cell-mediated killing of primary AML cells ex vivo, highlighting C3AR as a candidate therapeutic target in NPM1-mutated AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Ratones , Animales , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Transducción de Señal , Antígenos CD34 , Receptores Acoplados a Proteínas G
5.
Cell Oncol (Dordr) ; 45(3): 415-428, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35499815

RESUMEN

PURPOSE: Chondrosarcoma and osteosarcoma are the most frequently occurring bone cancers. Although surgery and chemotherapy are currently clinically applied, improved treatment options are urgently needed. Melatonin is known to inhibit cell proliferation in both tumor types. Although the underlying mechanisms are not clear yet, calcium homeostasis has been reported to be a key factor in cancer biology. Here, we set out to investigate whether regulation of calcium by this indolamine may be involved in its antitumor effect. METHODS: Cell viability was measured using a MTT assay and flow cytometry was used to measure levels of cytosolic calcium, intracellular oxidants, mitochondrial membrane potential and cell cycle progression. Mitochondrial calcium was analyzed by fluorimetry. Cell migration was determined using a scratch wound-healing assay. Western blot analysis was used to assess the expression of proteins related to cell cycle progression, epithelial to mesenchymal transition (EMT), Ac-CoA synthesis and intracellular signaling pathways. RESULTS: We found that melatonin decreases cytosolic and mitochondrial Ca2+ levels, intracellular oxidant levels, mitochondrial function and the expression of the E1 subunit of the pyruvate dehydrogenase complex. These changes were found to be accompanied by decreases in cell proliferation, cell migration and EMT marker expression. The addition of CaCl2 prevented the changes mentioned above, while co-treatment with the calcium chelator BAPTA enhanced the effects. CONCLUSIONS: Our data indicate that regulation of calcium homeostasis is a key factor in the inhibition of cell proliferation and migration by melatonin. This effect should be taken into consideration in combined therapies with traditional or new antitumor compounds, since it may circumvent therapy resistance.


Asunto(s)
Neoplasias Óseas , Melatonina , Osteosarcoma , Neoplasias de los Tejidos Blandos , Neoplasias Óseas/patología , Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Osteosarcoma/patología
6.
J Cell Physiol ; 236(1): 27-40, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32725819

RESUMEN

Several oncogenic pathways plus local microenvironmental conditions, such as hypoxia, converge on the regulation of cancer cells metabolism. The major metabolic alteration consists of a shift from oxidative phosphorylation as the major glucose consumer to aerobic glycolysis, although most of cancer cells utilize both pathways to a greater or lesser extent. Aerobic glycolysis, together with the directly related metabolic pathways such as the tricarboxylic acid cycle, the pentose phosphate pathway, or gluconeogenesis are currently considered as therapeutic targets in cancer research. Melatonin has been reported to present numerous antitumor effects, which result in a reduced cell growth. This is achieved with both low and high concentrations with no relevant side effects. Indeed, high concentrations of this indolamine reduce proliferation of cancer types resistant to low concentrations and induce cell death in some types of tumors. Previous work suggest that regulation of glucose metabolism and other related pathways play an important role in the antitumoral effects of high concentration of melatonin. In the present review, we analyze recent work on the regulation by such concentrations of this indolamine on aerobic glycolysis, gluconeogenesis, the tricarboxylic acid cycle and the pentose phosphate pathways of cancer cells.


Asunto(s)
Glucosa/metabolismo , Melatonina/administración & dosificación , Neoplasias/metabolismo , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Proliferación Celular/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos
7.
Oncol Rep ; 44(1): 293-302, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32319665

RESUMEN

The FMS­like tyrosine kinase 3 internal tandem duplication (FLT3­ITD) mutation represents the most frequent genetic alteration in acute myeloid leukemia (AML) and is associated with poor prognosis. The mutation promotes cancer cell survival and proliferation, and shifts their glucose metabolism towards aerobic glycolysis, a frequent alteration in cancer. In the present study, the impact of melatonin on the viability of AML cell lines with (MV­4­11 and MOLM­13) or without the FLT3­ITD mutation (OCI­AML3 and U­937) was evaluated. Melatonin induces cell death in AML cells carrying the FLT3­ITD mutation, but only inhibits the proliferation of AML cells without this mutation. Consistently, melatonin decreases tumor growth and increases animal survival in a xenograft model of FLT3­ITD AML. Toxicity is related to a decrease in glucose uptake, lactate dehydrogenase activity, lactate production and hypoxia­inducible factor­1α activation. Melatonin also regulates the expression of glucose metabolism­related genes, impairing the balance between anaplerosis and cataplerosis, through the upregulation of the expression of phosphoenolpyruvate carboxykinase 2 (PCK2). Collectively, the present findings highlight the regulation of glucose metabolism, currently considered a possible therapeutic target in cancer, as a key event in melatonin­induced cytotoxicity, suggesting its potential as a therapeutic tool for the treatment of patients with AML, particularly those carrying the FLT3­ITD mutation that results in low basal expression levels of PCK2.


Asunto(s)
Glucosa/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Melatonina/administración & dosificación , Mutación , Tirosina Quinasa 3 Similar a fms/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Melatonina/farmacología , Ratones , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Cancer Ther ; 17(3): 614-624, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29339551

RESUMEN

Internal tandem duplication (ITD) or tyrosine kinase domain mutations of FLT3 is the most frequent genetic alteration in acute myelogenous leukemia (AML) and are associated with poor disease outcome. Despite considerable efforts to develop single-target FLT3 drugs, so far, the most promising clinical response has been achieved using the multikinase inhibitor midostaurin. Here, we explore the activity of the indolocarbazole EC-70124, from the same chemical space as midostaurin, in preclinical models of AML, focusing on those bearing FLT3-ITD mutations. EC-70124 potently inhibits wild-type and mutant FLT3, and also other important kinases such as PIM kinases. EC-70124 inhibits proliferation of AML cell lines, inducing cell-cycle arrest and apoptosis. EC-70124 is orally bioavailable and displays higher metabolic stability and lower human protein plasma binding compared with midostaurin. Both in vitro and in vivo pharmacodynamic analyses demonstrate inhibition of FLT3-STAT5, Akt-mTOR-S6, and PIM-BAD pathways. Oral administration of EC-70124 in FLT3-ITD xenograft models demonstrates high efficacy, reaching complete tumor regression. Ex vivo, EC-70124 impaired cell viability in leukemic blasts, especially from FLT3-ITD patients. Our results demonstrate the ability of EC-70124 to reduce proliferation and induce cell death in AML cell lines, patient-derived leukemic blast and xenograft animal models, reaching best results in FLT3 mutants that carry other molecular pathways' alterations. Thus, its unique inhibition profile warrants EC-70124 as a promising agent for AML treatment based on its ability to interfere the complex oncogenic events activated in AML at several levels. Mol Cancer Ther; 17(3); 614-24. ©2018 AACR.


Asunto(s)
Carbazoles/farmacología , Indoles/farmacología , Leucemia Mieloide/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Enfermedad Aguda , Animales , Disponibilidad Biológica , Células CACO-2 , Carbazoles/farmacocinética , Carbazoles/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Indoles/farmacocinética , Indoles/uso terapéutico , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Ratones SCID , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-pim-1/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Células THP-1 , Tirosina Quinasa 3 Similar a fms/metabolismo
9.
Mol Cell Endocrinol ; 434: 238-49, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402602

RESUMEN

Melatonin (N-acetyl-5-methoxytryptamine) is a highly pleiotropic hormone with antioxidant, antiproliferative, oncolytic and neuroprotective properties. Here, we present evidence that the N-acetyl side chain plays a key role in melatonin's antiproliferative effect in HT22 and sw-1353 cells, but it does so at the expense of antioxidant and neuroprotective properties. Removal of the N-acetyl group enhances the antioxidant and neuroprotective properties of the indole, but it can lead to toxic methamphetamine-like effects in several cell lines. Inhibition of NFkB mimicked melatonin's antiproliferative and antioxidant effects, but not neuroprotection. Our results strongly suggest that neuroprotective and antiproliferative effects of melatonin rely on different parts of the molecule and are likely mediated by different mechanisms. We also predict that melatonin metabolism by target cells could determine whether melatonin inhibits cell proliferation, prevents toxicity or induces cell death (e.g. apoptosis or autophagy). These observations could have important implications for the rational use of melatonin in personalized medicine.


Asunto(s)
Antioxidantes/farmacología , Ácido Glutámico/toxicidad , Hipocampo/efectos de los fármacos , Melatonina/farmacología , Fármacos Neuroprotectores/farmacología , 5-Metoxitriptamina , Animales , Autofagia , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Hipocampo/citología , Humanos , Ratones
10.
PLoS One ; 10(8): e0135420, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26252771

RESUMEN

Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis). Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells) and in cells where it inhibits proliferation (chondrosarcoma cells). Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types.


Asunto(s)
Glucólisis , Melatonina/farmacología , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Aerobiosis , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular , Condrosarcoma/metabolismo , Citometría de Flujo , Glucosa/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Melatonina/química , Potenciales de la Membrana , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
J Pineal Res ; 57(3): 308-16, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25163989

RESUMEN

Glioblastoma-initiating cells (GICs) represent a stem cell-like subpopulation within malignant glioblastomas responsible for tumor development, progression, therapeutic resistance, and tumor relapse. Thus, eradication of this subpopulation is essential to achieve stable, long-lasting remission. We have previously reported that melatonin decreases cell proliferation of glioblastoma cells both in vitro and in vivo and synergistically increases effectiveness of drugs in glioblastoma cells and also in GICs. In this study, we evaluated the effect of the indolamine alone in GICs and found that melatonin treatment reduces GICs proliferation and induces a decrease in self-renewal and clonogenic ability accompanied by a reduction in the expression of stem cell markers. Moreover, our results also indicate that melatonin treatment, by modulating stem cell properties, induces cell death with ultrastructural features of autophagy. Thus, data reported here reinforce the therapeutic potential of melatonin as a treatment of malignant glioblastoma both by inhibiting tumor bulk proliferation or killing GICs, and simultaneously enhancing the effect of chemotherapy.


Asunto(s)
Autofagia/fisiología , Neoplasias Encefálicas/patología , Glioma/patología , Melatonina/fisiología , Secuencia de Bases , Citometría de Flujo , Humanos , Melatonina/farmacología , Microscopía Electrónica , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Int J Mol Sci ; 14(4): 6597-613, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23528889

RESUMEN

It is well established that melatonin exerts antitumoral effects in many cancer types, mostly decreasing cell proliferation at low concentrations. On the other hand, induction of apoptosis by melatonin has been described in the last few years in some particular cancer types. The cytotoxic effect occurs after its administration at high concentrations, and the molecular pathways involved have been only partially determined. Moreover, a synergistic effect has been found in several cancer types when it is administered in combination with chemotherapeutic agents. In the present review, we will summarize published work on the pro-apoptotic effect of melatonin in cancer cells and the reported mechanisms involved in such action. We will also construct a hypothesis on how different cell signaling pathways may relate each other on account for such effect.


Asunto(s)
Apoptosis/efectos de los fármacos , Melatonina/farmacología , Neoplasias/patología , Animales , Relación Dosis-Respuesta a Droga , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...