Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int J Biol Macromol ; 272(Pt 2): 132705, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38810850

RESUMEN

Trypanosoma cruzi is the causative agent of Chagas disease, as well as a trypanosomatid parasite with a complex biological cycle that requires precise mechanisms for regulating gene expression. In Trypanosomatidae, gene regulation occurs mainly at the mRNA level through the recognition of cis elements by RNA-binding proteins (RBPs). Alba family members are ubiquitous DNA/RNA-binding proteins with representatives in trypanosomatid parasites functionally related to gene expression regulation. Although T. cruzi possesses two groups of Alba proteins (Alba1/2 and Alba30/40), their functional role remains poorly understood. Thus, herein, a characterization of T. cruzi Alba (TcAlba) proteins was undertaken. Physicochemical, structural, and phylogenetic analysis of TcAlba showed features compatible with RBPs, such as hydrophilicity, RBP domains/motifs, and evolutionary conservation of the Alba-domain, mainly regarding other trypanosomatid Alba. However, in silico RNA interaction analysis of T. cruzi Alba proteins showed that TcAlba30/40 proteins, but not TcAlba1/2, would directly interact with the assayed RNA molecules, suggesting that these two groups of TcAlba proteins have different targets. Given the marked differences existing between both T. cruzi Alba groups (TcAlba1/2 and TcAlba30/40), regarding sequence divergence, RNA binding potential, and life-cycle expression patterns, we suggest that they would be involved in different biological processes.


Asunto(s)
Filogenia , Proteínas Protozoarias , Proteínas de Unión al ARN , Trypanosoma cruzi , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Unión Proteica , Secuencia de Aminoácidos , Secuencia Conservada
2.
Front Mol Biosci ; 10: 1206074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818099

RESUMEN

Chagas disease (ChD), caused by Trypanosoma cruzi, is endemic in American countries and an estimated 8 million people worldwide are chronically infected. Currently, only two drugs are available for therapeutic use against T. cruzi and their use is controversial due to several disadvantages associated with side effects and low compliance with treatment. Therefore, there is a need to search for new tripanocidal agents. Natural products have been considered a potential innovative source of effective and selective agents for drug development to treat T. cruzi infection. Recently, our research group showed that hexanic extract from Clethra fimbriata (CFHEX) exhibits anti-parasitic activity against all stages of T. cruzi parasite, being apoptosis the main cell death mechanism in both epimastigotes and trypomastigotes stages. With the aim of deepening the understanding of the mechanisms of death induced by CFHEX, the metabolic alterations elicited after treatment using a multiplatform metabolomics analysis (RP/HILIC-LC-QTOF-MS and GC-QTOF-MS) were performed. A total of 154 altered compounds were found significant in the treated parasites corresponding to amino acids (Arginine, threonine, cysteine, methionine, glycine, valine, proline, isoleucine, alanine, leucine, glutamic acid, and serine), fatty acids (stearic acid), glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine), sulfur compounds (trypanothione) and carboxylic acids (pyruvate and phosphoenolpyruvate). The most affected metabolic pathways were mainly related to energy metabolism, which was found to be decrease during the evaluated treatment time. Further, exogenous compounds of the triterpene type (betulinic, ursolic and pomolic acid) previously described in C. fimbriata were found inside the treated parasites. Our findings suggest that triterpene-type compounds may contribute to the activity of CFHEX by altering essential processes in the parasite.

3.
Trop Med Int Health ; 27(11): 1009-1012, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36101498

RESUMEN

OBJECTIVE: To determine whether prepandemic sera from patients with Chagas disease recognise SARS-CoV-2 antigens. MATERIALS AND METHODS: Forty sera from patients with Chagas disease were tested for the presence of IgG cross-reactivity against the nucleocapsid protein (NP) and spike (S) SARS-CoV-2 proteins by ELISA. Positive samples were tested again using a different ELISA and CLIA, both against NP. RESULTS: None of the sera from patients with Chagas disease, previously confirmed as positive for the presence of anti-Trypanosoma cruzi antibodies reacted against the SARS-CoV-2 S protein, and six samples tested positive for the NP antigen (15%). The six positive samples were re-tested, five remained positive by ELISA and all were negative by CLIA. CONCLUSION: According to our data, false-positive results might be a concern in the detection of SARS-CoV-2 antibodies in patients with Chagas disease.


Asunto(s)
COVID-19 , Enfermedad de Chagas , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Enfermedad de Chagas/diagnóstico , Sensibilidad y Especificidad
4.
Heliyon ; 8(3): e09182, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35368545

RESUMEN

Chagas disease, a worldwide public health concern, is a chronic infection caused by Trypanosoma cruzi. Considering T. cruzi chronic persistence correlates with CD4+ and CD8+ T cell dysfunction and the safety and efficacy profiles of Benznidazol and Nifurtimox, the two drugs currently used for its etiological treatment, are far from ideal, the search of new trypanocidal treatment options is a highly relevant issue. Therefore, the objective of this work was to evaluate the trypanocidal effect and cytokine production induction of three extracts (hexane, dichloromethane and hydroalcoholic) obtained from Clethra fimbriata, a plant traditionally used as a febrifuge in Colombia. Additionally, the extracts' major components with the highest trypanocidal activity were determined. It was evidenced C. fimbriata hexane extract exhibited the highest activity capable of inhibiting the three parasite developmental stages with an IC50/EC50 of 153.9 ± 29.5 (epimastigotes), 39.3 ± 7.2 (trypomastigotes), and 45.6 ± 10.5 (amastigotes) µg/mL, presenting a low cytotoxicity in VERO cells with a selectivity index ranging from 6.49 to 25.4. Moreover, this extract induced trypomastigote apoptotic death and inhibited parasite cell infection. The extract also induced IFN-γ and TNF production in CD4+ and CD8+ T cells, as well as de novo production of the cytotoxic molecules granzyme B and perforin in CD8+ T cells from healthy donors. Fatty acids and terpenes represented C. fimbriata key compounds. Thus, the trypanocidal activity and cytokine production induction of the hexane extract may be associated with terpene presence, particularly, triterpenes.

5.
Data Brief ; 41: 107953, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35242934

RESUMEN

Post-transcriptional gene regulation in Trypanosoma cruzi, the etiological agent of Chagas disease, plays a critical role in ensuring that the parasite successfully completes its life cycle in both of its obligate hosts: insect vector and mammals. This regulation is basically governed by RNA binding proteins (RBPs) through their interactions with cis-elements located in the UTRs of their mRNA targets. LYT1 gene, coding for a virulence factor of T. cruzi, is expressed into two isoforms: kLYT1 and mLYT1, which play different functions according to their cellular location and parasite life-cycle stages. Whereas kLYT1 exhibits a regulatory role during the epimastigote-to-metacyclic trypomastigote stage transition, mLYT1 acts as a pore-forming protein, relevant for host cell invasion and parasite intracellular survival. Considering the LYT1 biological relevance and the fact that this is a protein exclusive of T. cruzi, the protein and its mechanisms regulating the alternative gene expression products are promising targets for therapeutic intervention. In this work, an experimental approach consisting of pull-downs assays followed by proteomic analyzes was carried out to identify the proteins interacting with the different LYT1 mRNAs. The dataset presented here was obtained through three biological replicates using all the different UTRs characterized in the LYT1 mRNAs (i.e., 5´UTR kLYT1, 5´UTR mLYT1, and I and II-type 3´UTRs) as baits, and protein extracts from epimastigotes and trypomastigotes of the 058 PUJ (DTU I) strain. Bound proteins were analyzed by liquid chromatography coupled to mass spectrometry (LC/MS). As a control of non-specificity, the same protein extracts were incubated with Leishmania braziliensis rRNA and the bound proteins also identified by LC/MS. In all, 1,557 proteins were identified, 313 of them were found in at least two replicates and 18 proteins were exclusively associated with the LYT1 baits. Of these, six proteins have motifs related to RNA binding, and seven remain annotated as hypothetical proteins. Remarkably, three of these hypothetical proteins also contain nucleic acid binding motifs. This knowledge, beside expanding the known T. cruzi proteome, gains insight into putative regulatory proteins responsible for alternative LYT1 mRNAs processing. Raw mass spectrometry data are available via MassIVE proteome Xchange with identifier PXD027371.

6.
Front Cell Infect Microbiol ; 12: 1075717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36683674

RESUMEN

Trypanosoma cruzi, the causal agent of Chagas disease, has coexisted with humans for thousands of years. Therefore, the parasite has developed several mechanisms of antigenic variability that has allowed it to live inside the cells and evade the host immune response. Since T. cruzi displays an intracellular cycle-stage, our research team focused on providing insights into the CD8+ T cells immune response in chronic Chagas cardiomyopathy. We began our work in the 2000s studying parasite antigens that induce natural immune responses such as the KMP11 protein and TcTLE, its N-terminal derived peptide. Different approaches allowed us to reveal TcTLE peptide as a promiscuous CD8+ T cell epitope, able of inducing multifunctional cellular immune responses and eliciting a humoral response capable of decreasing parasite movement and infective capacity. Next, we demonstrated that as the disease progresses, total CD8+ T cells display a dysfunctional state characterized by a prolonged hyper-activation state along with an increase of inhibitory receptors (2B4, CD160, PD-1, TIM-3, CTLA-4) expression, an increase of specific terminal effector T cells (TTE), a decrease of proliferative capacity, a decrease of stem cell memory (TSCM) frequency, and a decrease of CD28 and CD3ζ expression. Thus, parasite-specific CD8+ T cells undergo clonal exhaustion, distinguished by an increase in late-differentiated cells, a mono-functional response, and enhanced expression of inhibitory receptors. Finally, it was found that anti-parasitic treatment induces an improved CD8+ T cell response in asymptomatic individuals, and a mouse animal model led us to establish a correlation between the quality of the CD8+ T cell responses and the outcome of chronic infection. In the future, using OMICs strategies, the identification of the specific cellular signals involved in disease progression will provide an invaluable resource for discovering new biomarkers of progression or new vaccine and immunotherapy strategies. Also, the inclusion of the TcTLE peptide in the rational design of epitope-based vaccines, the development of immunotherapy strategies using TSCM or the blocking of inhibitory receptors, and the use of the CD8+ T cell response quality to follow treatments, immunotherapies or vaccines, all are alternatives than could be explored in the fight against Chagas disease.


Asunto(s)
Linfocitos T CD8-positivos , Cardiomiopatía Chagásica , Infección Persistente , Trypanosoma cruzi , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Cardiomiopatía Chagásica/inmunología , Cardiomiopatía Chagásica/parasitología , Epítopos de Linfocito T , Infección Persistente/inmunología , Infección Persistente/parasitología , Trypanosoma cruzi/inmunología
7.
Front Cell Infect Microbiol ; 11: 723121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712620

RESUMEN

Chagas disease (ChD) is a chronic infection caused by Trypanosoma cruzi. This highly diverse intracellular parasite is classified into seven genotypes or discrete typing units (DTUs) and they overlap in geographic ranges, vectors, and clinical characteristics. Although studies have suggested that ChD progression is due to a decline in the immune response quality, a direct relationship between T cell responses and disease outcome is still unclear. To investigate the relationship between parasite control and immune T cell responses, we used two distinct infection approaches in an animal model to explore the histological and parasitological outcomes and dissect the T cell responses in T. cruzi-infected mice. First, we performed single infection experiments with DA (TcI) or Y (TcII) T. cruzi strains to compare the infection outcomes and evaluate its relationship with the T cell response. Second, because infections with diverse T. cruzi genotypes can occur in naturally infected individuals, mice were infected with the Y or DA strain and subsequently reinfected with the Y strain. We found different infection outcomes in the two infection approaches used. The single chronic infection showed differences in the inflammatory infiltrate level, while mixed chronic infection by different T. cruzi DTUs showed dissimilarities in the parasite loads. Chronically infected mice with a low inflammatory infiltrate (DA-infected mice) or low parasitemia and parasitism (Y/Y-infected mice) showed increases in early-differentiated CD8+ T cells, a multifunctional T cell response and lower expression of inhibitory receptors on CD8+ T cells. In contrast, infected mice with a high inflammatory infiltrate (Y-infected mice) or high parasitemia and parasitism (DA/Y-infected mice) showed a CD8+ T cell response distinguished by an increase in late-differentiated cells, a monofunctional response, and enhanced expression of inhibitory receptors. Overall, our results demonstrated that the infection outcomes caused by single or mixed T. cruzi infection with different genotypes induce a differential immune CD8+ T cell response quality. These findings suggest that the CD8+ T cell response might dictate differences in the infection outcomes at the chronic T. cruzi stage. This study shows that the T cell response quality is related to parasite control during chronic T. cruzi infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Linfocitos T CD8-positivos , Control de Enfermedades Transmisibles , Modelos Animales de Enfermedad , Ratones
8.
Exp Parasitol ; 223: 108079, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33524381

RESUMEN

Chagas disease is caused by Trypanosoma cruzi, and it is an important cause of morbidity and mortality in Latin America. There are no vaccines, and the chemotherapy available to treat this infection has serious side effects. In a search for alternative treatments, we determined the in vitro susceptibility of epimastigote and trypomastigote forms of T. cruzi and the cytotoxic effects on peripheral blood mononuclear cells (PBMCs) of ethanolic extracts obtained from six different plant species. The ethanolic extracts of Ageratina vacciniaefolia, Clethra fimbriata and Siparuna sessiliflora showed antiprotozoal activity against epimastigotes and low cytotoxicity in mammalian cells. However, only the ethanolic extract of C. fimbriata showed activity against T. cruzi trypomastigotes, and it had low cytotoxicity in PBMCs. An analysis on the phytochemical composition of C. fimbriata extract showed that its metabolites were primarily represented by two families of compounds: flavonoids and terpenoids. Lastly, we analyzed whether the A. vacciniaefolia, C. fimbriata, or S. sessiliflora ethanolic extracts induced IFN-γ or TNF-α production. Significantly, ethanolic extracts of C. fimbriata induced TNF-α production and S. sessiliflora induced both cytokines. In addition, C. fimbriata and S. sessiliflora induced the simultaneous secretion of IFN-γ and TNF-α in CD8+ T cells. The antiprotozoal and immunomodulatory activity of C. fimbriata may be related to the presence of flavonoid and triterpene compounds in the extract. Thus, these findings suggest that C. fimbriata may represent a valuable source of new bioactive compounds for the therapeutic treatment of Chagas disease that combines trypanocidal activity with the capacity to boost the immune response.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Leucocitos Mononucleares/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Trypanosoma cruzi/efectos de los fármacos , Adulto , Ageratina/química , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Cromatografía Líquida de Alta Presión , Clethraceae/química , Colombia , Femenino , Citometría de Flujo , Humanos , Concentración 50 Inhibidora , Interferón gamma/metabolismo , Laurales/química , Masculino , Medicina Tradicional , Extractos Vegetales/toxicidad , Espectrometría de Masa por Ionización de Electrospray , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
9.
J Proteomics ; 233: 104066, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33296709

RESUMEN

Leishmania are protozoan parasites responsible for leishmaniasis. These parasites present a precise gene regulation that allows them to survive different environmental conditions during their digenetic life cycle. This adaptation depends on the regulation of the expression of a wide variety of genes, which occurs, mainly at the post-transcriptional level. This differential gene expression is achieved by mechanisms based mainly in RNA binding proteins that regulate the translation and/or stability of mRNA targets by interaction with cis elements principally located in the untranslated regions (UTR). In recent studies, our group identified and characterized two proteins, SCD6 and RBP42, as RNA binding proteins in Leishmania braziliensis. To find clues about the cellular processes in which these proteins are involved, this work was aimed to determine the SCD6- and RBP42-interacting proteins (interactome) in L. braziliensis promastigotes. For this purpose, after an in vivo UV cross-linking, cellular extracts were used to immunoprecipitated, by specific antibodies, protein complexes in which SCD6 or RBP42 were present. Protein mass spectrometry analysis of the immunoprecipitated proteins identified 96 proteins presumably associated with SCD6 and 173 proteins associated with RBP42. Notably, a significant proportion of the identified proteins were shared in both interactomes, indicating a possible functional relationship between SCD6 and RBP42. Remarkably, many of the proteins identified in the SCD6 and RBP42 interactomes are related to RNA metabolism and translation processes, and many of them have been described as components of ribonucleoprotein (RNP) granules in Leishmania and related trypanosomatids. Thus, these results support a role of SCD6 and RBP42 in the assembly and/or function of mRNA-protein complexes, participating in the fate (decay/accumulation/translation) of L. braziliensis transcripts. SIGNIFICANCE: Parasites of the Leishmania genus present a particular regulation of gene expression, operating mainly at the post-transcriptional level, surely aimed to modulate quickly both mRNA and protein levels to survive the sudden environmental changes that occur during a parasite's life cycle as it moves from one host to another. This regulation of gene expression processes would be governed by the interaction of mRNA with RNA binding proteins. Nevertheless, the entirety of protein networks involved in these regulatory processes is far from being understood. In this regard, our work is contributing to stablish protein networks in which the L. braziliensis SCD6 and RBP42 proteins are involved; these proteins, in previous works, have been described as RNA binding proteins and found to participate in gene regulation in different cells and organisms. Additionally, our data point out a possible functional relationship between SCD6 and RBP42 proteins as constituents of mRNA granules, like processing bodies or stress granules, which are essential structures in the regulation of gene expression. This knowledge could provide a new approach for the development of therapeutic targets to control Leishmania infections.


Asunto(s)
Leishmania braziliensis , Regulación de la Expresión Génica , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
10.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244527

RESUMEN

The Tc964 protein was initially identified by its presence in the interactome associated with the LYT1 mRNAs, which code for a virulence factor of Trypanosoma cruzi. Tc964 is annotated in the T. cruzi genome as a hypothetical protein. According to phylogenetic analysis, the protein is conserved in the different genera of the Trypanosomatidae family; however, recognizable orthologues were not identified in other groups of organisms. Therefore, as a first step, an in-depth molecular characterization of the Tc946 protein was carried out. Based on structural predictions and molecular dynamics studies, the Tc964 protein would belong to a particular class of GTPases. Subcellular fractionation analysis indicated that Tc964 is a nucleocytoplasmic protein. Additionally, the protein was expressed as a recombinant protein in order to analyze its antigenicity with sera from Chagas disease (CD) patients. Tc964 was found to be antigenic, and B-cell epitopes were mapped by the use of synthetic peptides. In parallel, the Leishmania major homologue (Lm964) was also expressed as recombinant protein and used for a preliminary evaluation of antigen cross-reactivity in CD patients. Interestingly, Tc964 was recognized by sera from Chronic CD (CCD) patients at different stages of disease severity, but no reactivity against this protein was observed when sera from Colombian patients with cutaneous leishmaniasis were analyzed. Therefore, Tc964 would be adequate for CD diagnosis in areas where both infections (CD and leishmaniasis) coexist, even though additional assays using larger collections of sera are needed in order to confirm its usefulness for differential serodiagnosis.


Asunto(s)
Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Animales , Anticuerpos Antiprotozoarios , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/inmunología , Reacciones Cruzadas , Epítopos de Linfocito B , GTP Fosfohidrolasas , Humanos , Leishmania infantum/genética , Leishmania infantum/metabolismo , Leishmania major , Leishmaniasis/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Simulación de Dinámica Molecular , Filogenia , Pruebas Serológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...