RESUMEN
Disease-monitoring in large vessel vasculitis (LVV) is challenging. Simultaneous 18F-fluorodeoxyglucose positron emission tomography with magnetic resonance imaging (PET/MRI) provides functional assessment of vascular inflammation alongside high-definition structural imaging with a relatively low burden of radiation exposure. Here, we investigate the ability of PET/MRI to monitor LVV disease activity longitudinally in a prospective cohort of patients with active LVV. We demonstrate that both the PET and MRI components of the scan can distinguish active from inactive disease using established quantification methods. Using logistic-regression modelling of PET/MRI metrics, we devise a novel PET/MRI-specific Vasculitis Activity using MR PET (VAMP) score which is able to distinguish active from inactive disease with more accuracy than established methods and detects changes in disease activity longitudinally. These findings are evaluated in an independent validation cohort. Finally, PET/MRI improves clinicians' assessment of LVV disease activity and confidence in disease management, as assessed via clinician survey. In summary, PET/MRI may be useful in tracking disease activity and assessing treatment-response in LVV. Based on our findings, larger, prospective studies assessing PET/MRI in LVV are now warranted.
Asunto(s)
Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Anciano , Adulto , Vasculitis/diagnóstico por imagen , Radiofármacos , Imagen Multimodal/métodosRESUMEN
Purpose: To develop Choroidalyzer, an open-source, end-to-end pipeline for segmenting the choroid region, vessels, and fovea, and deriving choroidal thickness, area, and vascular index. Methods: We used 5600 OCT B-scans (233 subjects, six systemic disease cohorts, three device types, two manufacturers). To generate region and vessel ground-truths, we used state-of-the-art automatic methods following manual correction of inaccurate segmentations, with foveal positions manually annotated. We trained a U-Net deep learning model to detect the region, vessels, and fovea to calculate choroid thickness, area, and vascular index in a fovea-centered region of interest. We analyzed segmentation agreement (AUC, Dice) and choroid metrics agreement (Pearson, Spearman, mean absolute error [MAE]) in internal and external test sets. We compared Choroidalyzer to two manual graders on a small subset of external test images and examined cases of high error. Results: Choroidalyzer took 0.299 seconds per image on a standard laptop and achieved excellent region (Dice: internal 0.9789, external 0.9749), very good vessel segmentation performance (Dice: internal 0.8817, external 0.8703), and excellent fovea location prediction (MAE: internal 3.9 pixels, external 3.4 pixels). For thickness, area, and vascular index, Pearson correlations were 0.9754, 0.9815, and 0.8285 (internal)/0.9831, 0.9779, 0.7948 (external), respectively (all P < 0.0001). Choroidalyzer's agreement with graders was comparable to the intergrader agreement across all metrics. Conclusions: Choroidalyzer is an open-source, end-to-end pipeline that accurately segments the choroid and reliably extracts thickness, area, and vascular index. Especially choroidal vessel segmentation is a difficult and subjective task, and fully automatic methods like Choroidalyzer could provide objectivity and standardization.
Asunto(s)
Coroides , Tomografía de Coherencia Óptica , Humanos , Coroides/irrigación sanguínea , Coroides/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Aprendizaje Profundo , Vasos Retinianos/diagnóstico por imagen , Fóvea Central/diagnóstico por imagen , Fóvea Central/irrigación sanguínea , Adulto , Reproducibilidad de los ResultadosRESUMEN
In patients with chronic kidney disease (CKD), there is an unmet need for novel biomarkers that reliably track kidney injury, demonstrate treatment-response, and predict outcomes. Here, we investigate the potential of retinal optical coherence tomography (OCT) to achieve these ends in a series of prospective studies of patients with pre-dialysis CKD (including those with a kidney transplant), patients with kidney failure undergoing kidney transplantation, living kidney donors, and healthy volunteers. Compared to health, we observe similar retinal thinning and reduced macular volume in patients with CKD and in those with a kidney transplant. However, the choroidal thinning observed in CKD is not seen in patients with a kidney transplant whose choroids resemble those of healthy volunteers. In CKD, the degree of choroidal thinning relates to falling eGFR and extent of kidney scarring. Following kidney transplantation, choroidal thickness increases rapidly (~10%) and is maintained over 1-year, whereas gradual choroidal thinning is seen during the 12 months following kidney donation. In patients with CKD, retinal and choroidal thickness independently associate with eGFR decline over 2 years. These observations highlight the potential for retinal OCT to act as a non-invasive monitoring and prognostic biomarker of kidney injury.
Asunto(s)
Insuficiencia Renal Crónica , Degeneración Retiniana , Humanos , Estudios Prospectivos , Retina/diagnóstico por imagen , Coroides/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodosRESUMEN
Purpose: To develop an open-source, fully automatic deep learning algorithm, DeepGPET, for choroid region segmentation in optical coherence tomography (OCT) data. Methods: We used a dataset of 715 OCT B-scans (82 subjects, 115 eyes) from three clinical studies related to systemic disease. Ground-truth segmentations were generated using a clinically validated, semiautomatic choroid segmentation method, Gaussian Process Edge Tracing (GPET). We finetuned a U-Net with the MobileNetV3 backbone pretrained on ImageNet. Standard segmentation agreement metrics, as well as derived measures of choroidal thickness and area, were used to evaluate DeepGPET, alongside qualitative evaluation from a clinical ophthalmologist. Results: DeepGPET achieved excellent agreement with GPET on data from three clinical studies (AUC = 0.9994, Dice = 0.9664; Pearson correlation = 0.8908 for choroidal thickness and 0.9082 for choroidal area), while reducing the mean processing time per image on a standard laptop CPU from 34.49 ± 15.09 seconds using GPET to 1.25 ± 0.10 seconds using DeepGPET. Both methods performed similarly according to a clinical ophthalmologist who qualitatively judged a subset of segmentations by GPET and DeepGPET, based on smoothness and accuracy of segmentations. Conclusions: DeepGPET, a fully automatic, open-source algorithm for choroidal segmentation, will enable researchers to efficiently extract choroidal measurements, even for large datasets. As no manual interventions are required, DeepGPET is less subjective than semiautomatic methods and could be deployed in clinical practice without requiring a trained operator. Translational Relevance: DeepGPET addresses the lack of open-source, fully automatic, and clinically relevant choroid segmentation algorithms, and its subsequent public release will facilitate future choroidal research in both ophthalmology and wider systemic health.
Asunto(s)
Aprendizaje Profundo , Oftalmólogos , Humanos , Tomografía de Coherencia Óptica , Coroides/diagnóstico por imagen , AlgoritmosRESUMEN
Purpose: To evaluate the performance of an automated choroid segmentation algorithm in optical coherence tomography (OCT) data using a longitudinal kidney donor and recipient cohort. Methods: We assessed 22 donors and 23 patients requiring renal transplantation over up to 1 year posttransplant. We measured choroidal thickness (CT) and area and compared our automated CT measurements to manual ones at the same locations. We estimated associations between choroidal measurements and markers of renal function (estimated glomerular filtration rate [eGFR], serum creatinine, and urea) using correlation and linear mixed-effects (LME) modeling. Results: There was good agreement between manual and automated CT. Automated measures were more precise because of smaller measurement error over time. External adjudication of major discrepancies was in favor of automated measures. Significant differences were observed in the choroid pre- and posttransplant in both cohorts, and LME modeling revealed significant linear associations observed between choroidal measures and renal function in recipients. Significant associations were mostly stronger with automated CT (eGFR, P < 0.001; creatinine, P = 0.004; urea, P = 0.04) compared to manual CT (eGFR, P = 0.002; creatinine, P = 0.01; urea, P = 0.03). Conclusions: Our automated approach has greater precision than human-performed manual measurements, which may explain stronger associations with renal function compared to manual measurements. To improve detection of meaningful associations with clinical endpoints in longitudinal studies of OCT, reducing measurement error should be a priority, and automated measurements help achieve this. Translational Relevance: We introduce a novel choroid segmentation algorithm that can replace manual grading for studying the choroid in renal disease and other clinical conditions.
Asunto(s)
Trasplante de Riñón , Humanos , Creatinina , Coroides/diagnóstico por imagen , Algoritmos , UreaRESUMEN
Acute kidney injury (AKI) is common and associated with increased risks of cardiovascular and chronic kidney disease. Causative molecular/physiological pathways are poorly defined. There are no therapies to improve long-term outcomes. An activated endothelin system promotes cardiovascular and kidney disease progression. We hypothesized a causal role for this in the transition of AKI to chronic disease. Plasma endothelin-1 was threefold higher; urine endothelin-1 was twofold higher; and kidney preproendothelin-1, endothelin-A, and endothelin-B receptor message up-regulated in patients with AKI. To show causality, AKI was induced in mice by prolonged ischemia with a 4-week follow-up. Ischemic injury resulted in hypertension, endothelium-dependent and endothelium-independent macrovascular and microvascular dysfunction, and an increase in circulating inflammatory Ly6Chigh monocytes. In the kidney, we observed fibrosis, microvascular rarefaction, and inflammation. Administration of endothelin-A antagonist, but not dual endothelin-A/B antagonist, normalized blood pressure, improved macrovascular and microvascular function, and prevented the transition of AKI to CKD. Endothelin-A blockade reduced circulating and renal proinflammatory Ly6Chigh monocytes and B cells, and promoted recruitment of anti-inflammatory Ly6Clow monocytes to the kidney. Blood pressure reduction alone provided no benefits; blood pressure reduction alongside blockade of the endothelin system was as effective as endothelin-A antagonism in mitigating the long-term sequelae of AKI in mice. Our studies suggest up-regulation of the endothelin system in patients with AKI and show in mice that existing drugs that block the endothelin system, particularly those coupling vascular support and anti-inflammatory action, can prevent the transition of AKI to chronic kidney and cardiovascular disease.
Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Ratones , Animales , Endotelina-1/metabolismo , Endotelina-1/farmacología , Endotelina-1/uso terapéutico , Riñón/metabolismo , Lesión Renal Aguda/complicaciones , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Progresión de la Enfermedad , Endotelinas/metabolismo , Endotelinas/farmacología , Endotelinas/uso terapéutico , Isquemia/complicacionesRESUMEN
BACKGROUND: Data describing cardiovascular outcomes in patients with coronavirus disease 2019 (COVID-19) and chronic kidney disease (CKD) are lacking. We compared cardiovascular outcomes of patients with and without COVID-19, stratified by CKD status. METHODS: This retrospective, multi-regional data-linkage study utilised individual patient-level data from two Scottish cohorts. All patients tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Cohort 1 between 1 February 2020 and 31 March 2021 and in Cohort 2 between 28 February 2020 and 8 February 2021 were included. RESULTS: Overall, 86 964 patients were tested for SARS-CoV-2. There were 36 904 patients (mean±sd age 61±21â years; 58.1% women; 15.9% CKD; 10.1% COVID-19 positive) in Cohort 1 and 50 060 patients (mean±sd age 63±20â years; 62.0% women; 16.4% CKD; 9.1% COVID-19 positive) in Cohort 2. In CKD patients, COVID-19 increased the risk of cardiovascular death by more than two-fold within 30â days (cause-specific hazard ratio (csHR) meta-estimate 2.34, 95% CI 1.83-2.99) and by 57% at the end of study follow-up (csHR meta-estimate 1.57, 95% CI 1.31-1.89). Similarly, the risk of all-cause death in COVID-19 positive versus negative CKD patients was greatest within 30â days (HR 4.53, 95% CI 3.97-5.16). Compared with patients without CKD, those with CKD had a higher risk of testing positive (11.5% versus 9.3%). Following a positive test, CKD patients had higher rates of cardiovascular death (11.1% versus 2.7%), cardiovascular complications and cardiovascular hospitalisations (7.1% versus 3.3%) than those without CKD. CONCLUSIONS: COVID-19 increases the risk of cardiovascular and all-cause death in CKD patients, especially in the short-term. CKD patients with COVID-19 are also at a disproportionate risk of cardiovascular complications than those without CKD.
Asunto(s)
COVID-19 , Insuficiencia Renal Crónica , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , SARS-CoV-2 , Estudios Retrospectivos , Insuficiencia Renal Crónica/complicaciones , Hospitalización , Factores de RiesgoRESUMEN
Large-vessel vasculitis (LVV) manifests as inflammation of the aorta and its major branches and is the most common primary vasculitis in adults. LVV comprises two distinct conditions, giant cell arteritis and Takayasu arteritis, although the phenotypic spectrum of primary LVV is complex. Non-specific symptoms often predominate and so patients with LVV present to a range of health-care providers and settings. Rapid diagnosis, specialist referral and early treatment are key to good patient outcomes. Unfortunately, disease relapse remains common and chronic vascular complications are a source of considerable morbidity. Although accurate monitoring of disease activity is challenging, progress in vascular imaging techniques and the measurement of laboratory biomarkers may facilitate better matching of treatment intensity with disease activity. Further, advances in our understanding of disease pathophysiology have paved the way for novel biologic treatments that target important mediators of disease in both giant cell arteritis and Takayasu arteritis. This work has highlighted the substantial heterogeneity present within LVV and the importance of an individualized therapeutic approach. Future work will focus on understanding the mechanisms of persisting vascular inflammation, which will inform the development of increasingly sophisticated imaging technologies. Together, these will enable better disease prognostication, limit treatment-associated adverse effects, and facilitate targeted development and use of novel therapies.
Asunto(s)
Arteritis de Células Gigantes , Arteritis de Takayasu , Adulto , Aorta , Arteritis de Células Gigantes/complicaciones , Arteritis de Células Gigantes/diagnóstico , Arteritis de Células Gigantes/epidemiología , Humanos , Arteritis de Takayasu/complicaciones , Arteritis de Takayasu/diagnóstico , Arteritis de Takayasu/terapiaRESUMEN
OBJECTIVES: ANCA-associated vasculitis (AAV) is a rare autoimmune disorder that commonly involves the kidney. Early identification of kidney involvement, assessing treatment-response and predicting outcome are important clinical challenges. Here, we assessed the potential utility of interval kidney biopsy in AAV. METHODS: In a tertiary referral centre with a dedicated vasculitis service, we identified patients with AAV who had undergone interval kidney biopsy, defined as a repeat kidney biopsy (following an initial biopsy showing active AAV) undertaken to determine the histological response in the kidney following induction immunosuppression. We analysed biochemical, histological and outcome data, including times to kidney failure and death for all patients. RESULTS: We identified 57 patients with AAV who underwent at least one interval kidney biopsy (59 interval biopsies in total; median time to interval biopsy â¼130 days). Of the 59 interval biopsies performed, 24 (41%) patients had clinically suspected active disease at time of biopsy which was confirmed histologically in only 42% of cases; 35 (59%) patients were in clinical disease-remission, and this was correct in 97% of cases. The clinician's impression was incorrect in one in four patients. Hematuria at interval biopsy did not correlate with histological activity. Interval biopsy showed fewer acute lesions and more chronic damage compared with initial biopsy and led to immunosuppressive treatment-change in 75% (44/59) of patients. Clinical risk prediction tools tended to operate better using interval biopsy data. CONCLUSION: Interval kidney biopsy is useful for determining treatment-response and subsequent disease management in AAV. It may provide better prognostic information than initial kidney biopsy and should be considered for inclusion into future clinical trials and treatment protocols for patients with AAV.
Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Fallo Renal Crónico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/complicaciones , Anticuerpos Anticitoplasma de Neutrófilos , Biopsia/métodos , Femenino , Humanos , Inmunosupresores/uso terapéutico , Riñón/patología , Masculino , Estudios RetrospectivosRESUMEN
BACKGROUND: Atypical haemolytic uraemic syndrome (aHUS) is a rare disorder characterised by thrombocytopenia, microangiopathic haemolytic anaemia, and acute kidney injury. The condition is primarily caused by inherited or acquired dysregulation of complement regulatory proteins with ~40% of those affected aged < 18 years. Historically, kidney failure and death were common outcomes, however, improved understanding of the condition has led to discovery of novel therapies. OBJECTIVES: To evaluate the benefits and harms of interventions for aHUS. SEARCH METHODS: We searched the Cochrane Kidney and Transplant Register of Studies for randomised controlled studies (RCTs) up to 3 September 2020 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. MEDLINE(OVID) 1946 to 27 July 2020 and EMBASE (OVID) 1974 to 27 July 2020 were searched for non-RCTs. SELECTION CRITERIA: All randomised and non-randomised clinical trials comparing an intervention with placebo, an intervention with supportive therapy, or two or more interventions for aHUS were included. Given the rare nature of the condition in question, prospective single-arm studies of any intervention for aHUS were also included. DATA COLLECTION AND ANALYSIS: Two authors independently extracted pre-specified data from eligible studies and evaluated risk of bias using a newly developed tool based on existing Cochrane criteria. As statistical meta-analysis was not appropriate, qualitative analysis of data was then performed. MAIN RESULTS: We included five single-arm studies, all of which evaluated terminal complement inhibition for the treatment of aHUS. Four studies evaluated the short-acting C5 inhibitor eculizumab and one study evaluated the longer-acting C5 inhibitor ravulizumab. All included studies within the review were of non-randomised, single-arm design. Thus, risk of bias is high, and it is challenging to draw firm conclusions from this low-quality evidence. One hundred patients were included within three primary studies evaluating eculizumab, with further data reported from 37 patients in a secondary study. Fifty-eight patients were included in the ravulizumab study. After 26 weeks of eculizumab therapy there were no deaths and a 70% reduction in the number of patients requiring dialysis. Complete thrombotic microangiopathic (TMA) response was observed in 60% of patients at 26 weeks and 65% at two years. After 26 weeks of ravulizumab therapy four patients had died (7%) and complete TMA response was observed in 54% of patients. Substantial improvements were seen in estimated glomerular filtration rate and health-related quality of life in both eculizumab and ravulizumab studies. Serious adverse events occurred in 42% of patients, and meningococcal infection occurred in two patients, both treated with eculizumab. AUTHORS' CONCLUSIONS: When compared with historical data, terminal complement inhibition appears to offer favourable outcomes in patients with aHUS, based upon very low-quality evidence drawn from five single-arm studies. It is unlikely that an RCT will be conducted in aHUS and therefore careful consideration of future single-arm data as well as longer term follow-up data will be required to better understand treatment duration, adverse outcomes and risk of disease recurrence associated with terminal complement inhibition.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Inactivadores del Complemento/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Síndrome Hemolítico Urémico Atípico/mortalidad , Sesgo , Inactivadores del Complemento/efectos adversos , Tasa de Filtración Glomerular , Humanos , Ensayos Clínicos Controlados no Aleatorios como Asunto , Calidad de Vida , Microangiopatías Trombóticas/tratamiento farmacológicoRESUMEN
Broadly defined, aortitis refers to inflammation of the aorta and incorporates both infectious and non-infectious aetiologies. As advanced imaging modalities are increasingly incorporated into clinical practice, the phenotypic spectrum associated with aortitis has widened. The primary large vessel vasculitides, giant cell arteritis and Takayasu arteritis, are the most common causes of non-infectious aortitis. Aortitis without systemic disease or involvement of other vascular territories is classified as clinically isolated aortitis. Periaortitis, where inflammation spreads beyond the aortic wall, is an important disease subset with a distinct group of aetiologies. Infectious aortitis can involve bacterial, viral or fungal pathogens and, while uncommon, can be devastating. Importantly, optimal management strategies and patient outcomes differ between aortitis subgroups highlighting the need for a thorough diagnostic workup. Monitoring disease activity over time is also challenging as normal inflammatory markers do not exclude significant vascular inflammation, particularly after starting treatment. Additional areas of unmet clinical need include clear disease classifications and improved short-term and long-term management strategies. Some of these calls are now being answered, particularly with regard to large vessel vasculitis where our understanding has advanced significantly in recent years. Work extrapolated from temporal artery histology has paved the way for targeted biological agents and, although glucocorticoids remain central to the management of non-infectious aortitis, these may allow reduced glucocorticoid reliance. Future work should seek to clarify disease definitions, improve diagnostic pathways and ultimately allow a more stratified approach to patient management.
Asunto(s)
Aorta/diagnóstico por imagen , Aortitis/diagnóstico , Humanos , Tomografía Computarizada por Rayos XRESUMEN
Recent World Health Organization guidance has aimed to provide pragmatic guidance acknowledging the role of sequential nasopharyngeal swabs taken >24 hours apart for SARS-CoV-2 in high-risk populations. Patients with chronic kidney disease (CKD) are known to have an altered immune milieu which may be associated with a delay in viral clearance. Here, a cross-sectional observational study of 138 patients admitted with SARS-CoV-2 infection at two large regional hospitals in Scotland, UK examined the median time to two consecutive negative nasopharyngeal swabs for SARS-CoV-2 in an inpatient population. The median time from admission to the first of two consecutive negative nasopharyngeal swabs was 18 days (range = 1-44) in patients with CKD, compared with 11 days (range: 1-71) in patients without CKD (P = .0007). Multivariable linear regression analysis using explanatory variables of age, sex, SARS-CoV-2 disease severity, key comorbidities and renal function showed that declining estimated glomerular filtration rate was independently associated with prolonged time to viral clearance. Our data suggest that patients with CKD who are admitted to hospital with SARS-CoV-2 take longer to achieve sequential negative nasopharyngeal swab reverse transcription-polymerase chain reaction results than those without CKD. This has implications for renal service provision, discharge planning and hospital capacity as well as a direct impact on patients due to extended hospital stay, anxiety and stigmatisation.
Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Insuficiencia Renal Crónica/complicaciones , SARS-CoV-2/fisiología , Esparcimiento de Virus , Anciano , Anciano de 80 o más Años , COVID-19/complicaciones , COVID-19/terapia , Estudios Transversales , Femenino , Tasa de Filtración Glomerular , Hospitalización , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Escocia , Factores de TiempoRESUMEN
This article was originally published under a CC By-NC 4.0 license, but has now been made available under a Creative Commons Attribution 4.0.
RESUMEN
BACKGROUND: Fifteen regional studies published over the last six decades surveying prevalence, mortality and hospital admissions have suggested that Scotland is amongst the highest risk nations for multiple sclerosis (MS) in the world. However, substantial intranational variation in rates (between regions) has been described in numerous countries, including in the only previous Scottish national survey, which used hospital admission data, to address this issue. Against this backdrop, the Scottish Multiple Sclerosis Register (SMSR) was established in 2010 to prospectively collect nationally comprehensive incidence data and to allow for regional comparisons. METHODS: Here, we present the SMSR and analyse the variation in crude and age-sex standardized incidence rates, lifetime risk (cumulative incidence), and the sex distribution of cases and rates, between the 14 administrative Health Boards or regions of Scotland: 01 January 2010 to 31 December 2017. RESULTS: The overall incidence rate for Scotland was 8.76/100,000 person-years (standardized: 8.54). Regional incidence rates varied significantly-up to threefold-between Health Boards (p < 1 × 10-13). The national female-to-male sex ratio was 2.3:1, but this too varied regionally (outlier regions result in a range from 1.0 to 4.2:1). Lifetime risk ranged from 19.9/1000 for females in Orkney (58.98°N) to 1.6/1000 for males in the Borders (55.60°N). Comparison with a previous national survey suggests that these differences are longstanding. In 6 of 14 regions the lifetime risk for women exceeds 1%. CONCLUSIONS: This study introduces a national incidence register: a valuable research tool and the result of substantial public investment. The wide variation in incidence rates and sex ratios between regions, in a relatively homogenous population, raises questions for future study.