Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Compos Hybrid Mater ; 7(5): 163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39371407

RESUMEN

Flexible magnetic materials have great potential for biomedical and soft robotics applications, but they need to be mechanically robust. An extraordinary material from a mechanical point of view is spider silk. Recently, methods for producing artificial spider silk fibers in a scalable and all-aqueous-based process have been developed. If endowed with magnetic properties, such biomimetic artificial spider silk fibers would be excellent candidates for making magnetic actuators. In this study, we introduce magnetic artificial spider silk fibers, comprising magnetite nanoparticles coated with meso-2,3-dimercaptosuccinic acid. The composite fibers can be produced in large quantities, employing an environmentally friendly wet-spinning process. The nanoparticles were found to be uniformly dispersed in the protein matrix even at high concentrations (up to 20% w/w magnetite), and the fibers were superparamagnetic at room temperature. This enabled external magnetic field control of fiber movement, rendering the material suitable for actuation applications. Notably, the fibers exhibited superior mechanical properties and actuation stresses compared to conventional fiber-based magnetic actuators. Moreover, the fibers developed herein could be used to create macroscopic systems with self-recovery shapes, underscoring their potential in soft robotics applications. Supplementary information: The online version contains supplementary material available at 10.1007/s42114-024-00962-y.

2.
Int J Mol Sci ; 25(19)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39408964

RESUMEN

Self-locking structures are often studied in macroscopic energy absorbers, but the concept of self-locking can also be effectively applied at the nanoscale. In particular, we can engineer self-locking mechanisms at the molecular level through careful shape selection or chemical functionalisation. The present work focuses on the use of collapsed carbon nanotubes (CNTs) as self-locking elements. We start by inserting a thin CNT into each of the two lobes of a collapsed larger CNT. We aim to create a system that utilises the unique properties of CNTs to achieve stable configurations and enhanced energy absorption capabilities at the nanoscale. We used molecular dynamics simulations to investigate the mechanical properties of periodic systems realised with such units. This approach extends the application of self-locking mechanisms and opens up new possibilities for the development of advanced materials and devices.


Asunto(s)
Simulación de Dinámica Molecular , Nanotubos de Carbono , Nanotubos de Carbono/química
3.
Adv Sci (Weinh) ; : e2406079, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303205

RESUMEN

Before humans and allegedly any animal group, spiders developed "functionally graded toothed blades" that cut one of the toughest biological materials: silk. Here, this work reveals the importance of micro-structured serrations in spiders' fangs that allow these animals to cut silk and artificial high-performance fibers, such as carbon or Kevlar. The importance of serrations revolves around the stress concentration at the interface between the fang and the fibers, resulting in a cutting efficiency superior to that of a razor blade. This efficiency is increased by the presence of pretension in the fibers and is high also for fibers with different diameters like silk, because of the serration grading that allows a smart positioning of the fiber in the optimal cutting condition. This work proposes that when the silk fiber is grasped by the fang, it slides along the serrated edge till it gets locked in the serration with a comparable size, where the load to cut is minimal. These results provide a new perspective on cutting mechanisms and set the roots for spider fang-inspired cutting tools.

4.
ACS Appl Mater Interfaces ; 16(38): 51364-51375, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39259945

RESUMEN

Magnetically responsive soft biomaterials are at the forefront of bioengineering and biorobotics. We have created a magnetic hybrid material by coupling silk fibroin─i.e., a natural biopolymer with an optimal combination of biocompatibility and mechanical robustness─with the FeCo alloy, the ferromagnetic material with the highest saturation magnetization. The material is in the form of a 6 µm-thick silk fibroin film, coated with a FeCo layer (nominal thickness: 10 nm) grown by magnetron sputtering deposition. The sputtering deposition technique is versatile and eco-friendly and proves effective for growing the magnetic layer on the biopolymer substrate, also allowing one to select the area to be decorated. The hybrid material is biocompatible, lightweight, flexible, robust, and water-resistant. Electrical, structural, mechanical, and magnetic characterization of the material, both as-prepared and after being soaked in water, have provided information on the adhesion between the silk fibroin substrate and the FeCo layer and on the state of internal mechanical stresses. The hybrid film exhibits a high magnetic bending response under a magnetic field gradient, thanks to an ultralow fraction of the FeCo component (less than 0.1 vol %, i.e., well below 1 wt %). This reduces the risk of adverse health effects and makes the material suitable for bioactuation applications.


Asunto(s)
Materiales Biocompatibles , Fibroínas , Fibroínas/química , Materiales Biocompatibles/química , Cobalto/química , Animales , Bombyx/química , Aleaciones/química
5.
Philos Trans A Math Phys Eng Sci ; 382(2279): 20240037, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39129404

RESUMEN

Recently, non-local configurations have been proposed by adding beyond nearest neighbour couplings among elements in lattices to obtain roton-like dispersion relations and phase and group velocities with opposite signs. Even though the introduction of non-local elastic links in metamaterials has unlocked unprecedented possibilities, literature models and prototypes seem neither to provide criteria to compare local and non-local lattices nor to discuss any related rules governing the transition between the two configurations. A physically reasonable principle that monoatomic one-dimensional chains must obey to pass from single- to multi-connected systems is here proposed through a mass conservation law for elastic springs thereby introducing a suitable real dimensionless parameter [Formula: see text] to tune stiffness distribution. Therefore, the dispersion relations as a function of [Formula: see text] and of the degree of non-locality [Formula: see text] are derived analytically, demonstrating that the proposed principle can be rather interpreted as a general mechanical consistency condition to preserve proper dynamics, involving the spring-to-bead mass ratio. Finally, after discussing qualitative results and deriving some useful inequalities, numerical simulations and two-dimensional FFTs are performed for some paradigmatic examples to highlight key dynamics features exhibited by chains with finite length as the parameters [Formula: see text] and [Formula: see text] vary.This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.

6.
Nat Commun ; 15(1): 5863, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997272

RESUMEN

Fail-safe design of devices requires robust integrity assessment procedures which are still absent for 2D materials, hence affecting transfer to applications. Here, a combined on-chip tension and cracking method, and associated data reduction scheme have been developed to determine the fracture toughness and strength of monolayer-monodomain-freestanding graphene. Myriads of specimens are generated providing statistical data. The crack arrest tests provide a definitive fracture toughness of 4.4 MPa m . Tension on-chip provides Young's modulus of 950 GPa, fracture strain of 11%, and tensile strength up to 110 GPa, reaching a record of stored elastic energy ~6 GJ m-3 as confirmed by thermodynamics and quantized fracture mechanics. A ~ 1.4 nm crack size is often found responsible for graphene failure, connected to 5-7 pair defects. Micron-sized graphene membranes and smaller can be produced defect-free, and design rules can be based on 110 GPa strength. For larger areas, a fail-safe design should be based on a maximum 57 GPa strength.

7.
Med Biol Eng Comput ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008187

RESUMEN

The mechanics of the trabecular bone is related to its structure; this work aimed to propose a simple projection method to clarify the correlation between the principal mechanical direction (PMD) and the principal microstructural direction (PMSD) of trabecular bones from osteoporotic femoral heads. A total of 529 trabecular cubes were cropped from five osteoporotic femoral heads. The micro computed tomography (µCT) sequential images of each cube were first projected onto the three Cartesian coordinate planes to have three overlapped images, and the trabecular orientation distribution in the three images was analyzed. The PMSD corresponding to the greatest distribution frequency of the trabecular orientation in the three images was defined. Then, the voxel finite element (FE) models of the cubes were reconstructed and simulated to obtain their compliance matrices, and the matrices were subjected to transversal rotation to find their maximum elastic constants. The PMD corresponding to the maximum elastic constant was defined. Subsequently, the correlation of the defined PMSD and PMD was analyzed. The results showed that PMSD and PMD of the trabecular cubes did not show a significant difference at the xy- and yz-planes except that at the zx-plane. Despite this, the mean PMSD-PMD deviations at the three coordinate planes were close to 0°, and the PMSD-PMD fitting to the line PMSD = PMD demonstrated their high correlation. This study might be helpful to identify the loading direction of anisotropic trabecular bones in experiments by examining the PMSD and also to guide bone scaffold design for bone tissue repair.

8.
J Funct Biomater ; 15(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786646

RESUMEN

Biodegradable vascular stents (BVS) are deemed as great potential alternatives for overcoming the inherent limitations of permanent metallic stents in the treatment of coronary artery diseases. The current study aimed to comprehensively compare the mechanical behaviors of four poly(lactic acid) (PLA) BVS designs with varying geometries via numerical methods and to clarify the optimal BVS selection. Four PLA BVS (i.e., Absorb, DESolve, Igaki-Tamai, and Fantom) were first constructed. A degradation model was refined by simply including the fatigue effect induced by pulsatile blood pressures, and an explicit solver was employed to simulate the crimping and degradation behaviors of the four PLA BVS. The degradation dynamics here were characterized by four indices. The results indicated that the stent designs affected crimping and degradation behaviors. Compared to the other three stents, the DESolve stent had the greatest radial stiffness in the crimping simulation and the best diameter maintenance ability despite its faster degradation; moreover, the stent was considered to perform better according to a pilot scoring system. The current work provides a theoretical method for studying and understanding the degradation dynamics of the PLA BVS, and it could be helpful for the design of next-generation BVS.

9.
ACS Nano ; 18(12): 8626-8640, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38417167

RESUMEN

Coalescence-induced condensation droplet jumping has been extensively studied for anti-icing, condensation heat transfer, water harvesting, and self-cleaning. Another phenomenon that is gaining attention for potential enhancements is the self-ejection of individual droplets. However, the mechanism underlying this process remains elusive due to cases in which the abrupt detachment of an interface establishes an initial Laplace pressure difference. In this study, we investigate the self-ejection of individual droplets from uniformly hydrophobic microstructures with divergent geometries. We design, fabricate, and test arrays of truncated, nanostructured, and hydrophobic microcones arranged in a square pattern. High-speed microscopy reveals the dynamics of a single condensation droplet between four cones: after cycles of growth and stopped self-propulsion, the suspended droplet self-ejects without abrupt detachments. Through analytical modeling of the droplet in a conical pore as an approximation, we describe the slow isopressure growth phases and the rapid transients driven by surface energy release once a dynamic configuration is reached. Microcones with uniform wettability, in addition to being easier to fabricate, have the potential to enable the self-ejection of all nucleated droplets with a designed size, promising significant improvements in the aforementioned applications and others.

10.
Biomech Model Mechanobiol ; 23(2): 485-505, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38060155

RESUMEN

Cell membranes, mediator of many biological mechanisms from adhesion and metabolism up to mutation and infection, are highly dynamic and heterogeneous environments exhibiting a strong coupling between biochemical events and structural re-organisation. This involves conformational changes induced, at lower scales, by lipid order transitions and by the micro-mechanical interplay of lipids with transmembrane proteins and molecular diffusion. Particular attention is focused on lipid rafts, ordered lipid microdomains rich of signalling proteins, that co-localise to enhance substance trafficking and activate different intracellular biochemical pathways. In this framework, the theoretical modelling of the dynamic clustering of lipid rafts implies a full multiphysics coupling between the kinetics of phase changes and the mechanical work performed by transmembrane proteins on lipids, involving the bilayer elasticity. This mechanism produces complex interspecific dynamics in which membrane stresses and chemical potentials do compete by determining different morphological arrangements, alteration in diffusive walkways and coalescence phenomena, with a consequent influence on both signalling potential and intracellular processes. Therefore, after identifying the leading chemo-mechanical interactions, the present work investigates from a modelling perspective the spatio-temporal evolution of raft domains to theoretically explain co-localisation and synergy between proteins' activation and raft formation, by coupling diffusive and mechanical phenomena to observe different morphological patterns and clustering of ordered lipids. This could help to gain new insights into the remodelling of cell membranes and could potentially suggest mechanically based strategies to control their selectivity, by orienting intracellular functions and mechanotransduction.


Asunto(s)
Mecanotransducción Celular , Microdominios de Membrana , Ligandos , Membrana Celular/metabolismo , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Lípidos/análisis , Membrana Dobles de Lípidos/análisis , Membrana Dobles de Lípidos/metabolismo
11.
Sci Rep ; 13(1): 15739, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735476

RESUMEN

Patterning of two or more liquids, either homogeneous in each phase or mixed with particles (including biological matter, such as cells and proteins), by controlling their flow dynamics, is relevant to several applications. Examples include dynamic spatial confinement of liquids in microfluidic systems (such as lab-on-a-chip and organ-on-a-chip devices) or structuring of polymers to modulate various properties (such as strength, conductivity, transparency and surface finishing). State-of-the-art strategies use various technologies, including positioners, shakers and acoustic actuators, which often combine limited versatility of mixing with significant inefficiency, energy consumption, and noise, as well as tendency to increase the temperature of the liquids. Here, we describe a new kind of robotic mixers of liquids, based on electro-responsive smart materials (dielectric elastomer actuators). We show for the first time how an efficient soft robotic device can be used to produce, via combinations of rotations and translations, various spatial patterns in liquids and maintain them stable for a few minutes. Moreover, we show that, as compared to a conventional orbital shaker, the new type of robotic device can mix liquids with a higher efficacy (~ 94% relative to ~ 80%, after 8 min of mixing) and with a significantly lower increase of the liquids' temperature (+ 1 °C relative to + 5 °C, after 6 h of mixing). This is especially beneficial when mixing should occur according to controllable spatial features and should involve temperature-sensitive matter (such as biological cells, proteins, pre-polymers and other thermolabile molecules).

12.
J R Soc Interface ; 20(205): 20230330, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553994

RESUMEN

The current study investigates the body-environment interaction and exploits the passive viscoelastic properties of the body to perform undulatory locomotion. The investigations are carried out using a mathematical model based on a dry frictional environment, and the results are compared with the performance obtained using a physical model. The physical robot is a wheel-based modular system with flexible joints moving on different substrates. The influence of the spatial distribution of body stiffness on speed performance is also investigated. Our results suggest that the environment affects the performance of undulatory locomotion based on the distribution of body stiffness. While stiffness may vary with the environment, we have established a qualitative constitutive law that holds across environments. Specifically, we expect the stiffness distribution to exhibit either an ascending-descending or an ascending-plateau pattern along the length of the object, from head to tail. Furthermore, undulatory locomotion showed sensitivity to contact mechanics: solid-solid or solid-viscoelastic contact produced different locomotion kinematics. Our results elucidate how terrestrial limbless animals achieve undulatory locomotion performance by exploiting the passive properties of the environment and the body. Application of the results obtained may lead to better performing long-segmented robots that exploit the suitability of passive body dynamics and the properties of the environment in which they need to move.


Asunto(s)
Locomoción , Modelos Teóricos , Animales , Fenómenos Biomecánicos
13.
Adv Mater ; 35(41): e2302816, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37369361

RESUMEN

Hydrogel-based soft actuators can operate in sensitive environments, bridging the gap of rigid machines interacting with soft matter. However, while stimuli-responsive hydrogels can undergo extreme reversible volume changes of up to ≈90%, water transport in hydrogel actuators is in general limited by their poroelastic behavior. For poly(N-isopropylacrylamide) (PNIPAM) the actuation performance is even further compromised by the formation of a dense skin layer. Here it is shown, that incorporating a bioinspired microtube graphene network into a PNIPAM matrix with a total porosity of only 5.4% dramatically enhances actuation dynamics by up to ≈400% and actuation stress by ≈4000% without sacrificing the mechanical stability, overcoming the water transport limitations. The graphene network provides both untethered light-controlled and electrically powered actuation. It is anticipated that the concept provides a versatile platform for enhancing the functionality of soft matter by combining responsive and 2D materials, paving the way toward designing soft intelligent matter.

14.
Innovation (Camb) ; 4(2): 100389, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36895759

RESUMEN

Developing versatile and robust surfaces that mimic the skins of living beings to regulate air/liquid/solid matter is critical for many bioinspired applications. Despite notable achievements, such as in the case of developing robust superhydrophobic surfaces, it remains elusive to realize simultaneously topology-specific superwettability and multipronged durability owing to their inherent tradeoff and the lack of a scalable fabrication method. Here, we present a largely unexplored strategy of preparing an all-perfluoropolymer (Teflon), nonlinear stability-assisted monolithic surface for efficient regulating matters. The key to achieving topology-specific superwettability and multilevel durability is the geometric-material mechanics design coupling superwettability stability and mechanical strength. The versatility of the surface is evidenced by its manufacturing feasibility, multiple-use modes (coating, membrane, and adhesive tape), long-term air trapping in 9-m-deep water, low-fouling droplet transportation, and self-cleaning of nanodirt. We also demonstrate its multilevel durability, including strong substrate adhesion, mechanical robustness, and chemical stability, all of which are needed for real-world applications.

15.
Front Public Health ; 11: 1106313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992892

RESUMEN

Accountability for global health issues such as a pandemic and its devastating consequences are usually ascribed to a virus, but a comprehensive view should also take into account the state of the host. Data suggests that excessive nutrition is to blame for a yet unknown but not negligible portion of deaths attributed to severe acute respiratory syndrome coronavirus 2. We analyzed the correlation between mean body mass index (BMI) and 2-year coronavirus disease 2019 (COVID-19) mortality rates reported by 181 countries worldwide. Almost two thirds of the countries included had a mean BMI greater or equal to 25, with death rates ranging from 3 to 6,280 per million. Death rates in countries with a mean BMI below 25 ranged from 3 to 1,533. When the analysis was restricted to countries where the extent of testing was deemed more representative of actual mortality, only 20.1% had a mean BMI <25 but the mortality difference persisted. A second analysis looking at pre-vaccination mortality obtained from a different source led to similar conclusions. Due to the nature of the variables, reverse causation can be excluded while common causation can not. A mean BMI <25 for a country seems to spare its citizens from the highest COVID-19 mortality rates. The impact of excess weight on global COVID-19 mortality is suspected to have been much higher than what currently perceived, here estimated at no less than a fourfold increase in mortality. Countries with normal mean BMI constitute precious test beds for the quantification of the effects of overeating on COVID-19 mortality.


Asunto(s)
COVID-19 , Humanos , Índice de Masa Corporal , SARS-CoV-2 , Salud Global , Estado Nutricional
16.
Adv Sci (Weinh) ; 10(9): e2205146, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36725304

RESUMEN

Geraniaceae seeds represent a role model in soft robotics thanks to their ability to move autonomously across and into the soil driven by humidity changes. The secret behind their mobility and adaptivity is embodied in the hierarchical structures and anatomical features of the biological hygroscopic tissues, geometrically designed to be selectively responsive to environmental humidity. Following a bioinspired approach, the internal structure and biomechanics of Pelargonium appendiculatum (L.f.) Willd seeds are investigated to develop a model for the design of a soft robot. The authors exploit the re-shaping ability of 4D printed materials to fabricate a seed-like soft robot, according to the natural specifications and model, and using biodegradable and hygroscopic polymers. The robot mimics the movement and performances of the natural seed, reaching a torque value of ≈30 µN m, an extensional force of ≈2.5 mN and it is capable to lift ≈100 times its own weight. Driven by environmental humidity changes, the artificial seed is able to explore a sample soil, adapting its morphology to interact with soil roughness and cracks.

17.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768799

RESUMEN

The manufacturing of high-modulus, high-strength fibers is of paramount importance for real-world, high-end applications. In this respect, carbon nanotubes represent the ideal candidates for realizing such fibers. However, their remarkable mechanical performance is difficult to bring up to the macroscale, due to the low load transfer within the fiber. A strategy to increase such load transfer is the introduction of chemical linkers connecting the units, which can be obtained, for example, using carbon ion-beam irradiation. In this work, we investigate, via molecular dynamics simulations, the mechanical properties of twisted nanotube bundles in which the linkers are composed of interstitial single carbon atoms. We find a significant interplay between the twist and the percentage of linkers. Finally, we evaluate the suitability of two different force fields for the description of these systems: the dihedral-angle-corrected registry-dependent potential, which we couple for non-bonded interaction with either the AIREBO potential or the screened potential ReboScr2. We show that both of these potentials show some shortcomings in the investigation of the mechanical properties of bundles with carbon linkers.


Asunto(s)
Simulación de Dinámica Molecular , Nanotubos de Carbono , Nanotubos de Carbono/química
18.
J R Soc Interface ; 20(199): 20220875, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36751930

RESUMEN

One of the oldest yet most common modalities of locomotion known among limbless animals is undulatory, also recognized for its stability compared to legged locomotion. Multiple forms of active mechanisms, e.g. active gait control, and passive mechanisms, e.g. body morphology and material properties, have adapted to different environments. The current research explores the passive role of body stiffness and internal losses in meeting terrain requirements. Furthermore, it addresses the influence of the environment on the resultant gait and how the interplay between various environments and body properties can lead to different speeds. We modelled undulatory locomotion in a dry friction environment where frictional anisotropy determines propulsion. We found that the body stiffness, the moment of inertia, the dry frictional coefficient ratio between normal and tangential frictional constants, and the internal damping of the body play an essential role in optimizing speed and animal adaptability to external conditions. Furthermore, we demonstrate that various known gaits like swimming, crawling and polychaete-like locomotion are achieved as a result of the interaction between body and environment parameters. Moreover, we validated the model by retrieving a corn snake's speed using data from the literature. This study demonstrates that the dependence between morphology, body material properties and environment can be exploited to design long-segmented robots to perform in specialized situations.


Asunto(s)
Locomoción , Natación , Animales , Fricción , Anisotropía , Fenómenos Biomecánicos , Marcha
19.
Biophys Rev (Melville) ; 4(3): 031301, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38510706

RESUMEN

Spider silk fibers are of scientific and industrial interest because of their extraordinary mechanical properties. These properties are normally determined by tensile tests, but the values obtained are dependent on the morphology of the fibers, the test conditions, and the methods by which stress and strain are calculated. Because of this, results from many studies are not directly comparable, which has led to widespread misconceptions in the field. Here, we critically review most of the reports from the past 50 years on spider silk mechanical performance and use artificial spider silk and native silks as models to highlight the effect that different experimental setups have on the fibers' mechanical properties. The results clearly illustrate the importance of carefully evaluating the tensile test methods when comparing the results from different studies. Finally, we suggest a protocol for how to perform tensile tests on silk and biobased fibers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...