Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(4)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39077908

RESUMEN

GBasis is a free and open-source Python library for molecular property computations based on Gaussian basis functions in quantum chemistry. Specifically, GBasis allows one to evaluate functions expanded in Gaussian basis functions (including molecular orbitals, electron density, and reduced density matrices) and to compute functionals of Gaussian basis functions (overlap integrals, one-electron integrals, and two-electron integrals). Unique features of GBasis include supporting evaluation and analytical integration of arbitrary-order derivatives of the density (matrices), computation of a broad range of (screened) Coulomb interactions, and evaluation of overlap integrals of arbitrary numbers of Gaussians in arbitrarily high dimensions. For circumstances where the flexibility of GBasis is less important than high performance, a seamless Python interface to the Libcint C package is provided. GBasis is designed to be easy to use, maintain, and extend following many standards of sustainable software development, including code-quality assurance through continuous integration protocols, extensive testing, comprehensive documentation, up-to-date package management, and continuous delivery. This article marks the official release of the GBasis library, outlining its features, examples, and development.

2.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38748031

RESUMEN

Grid is a free and open-source Python library for constructing numerical grids to integrate, interpolate, and differentiate functions (e.g., molecular properties), with a strong emphasis on facilitating these operations in computational chemistry and conceptual density functional theory. Although designed, maintained, and released as a stand-alone Python library, Grid was originally developed for molecular integration, interpolation, and solving the Poisson equation in the HORTON and ChemTools packages. Grid is designed to be easy to use, extend, and maintain; this is why we use Python and adopt many principles of modern software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. We leverage popular scientific packages, such as NumPy and SciPy, to ensure high efficiency and optimized performance in grid development. This article is the official release note of the Grid library showcasing its unique functionality and scope.

3.
J Am Chem Soc ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917924

RESUMEN

Accurate potential energy models of proteins must describe the many different types of noncovalent interactions that contribute to a protein's stability and structure. Pi-pi contacts are ubiquitous structural motifs in all proteins, occurring between aromatic and nonaromatic residues and play a nontrivial role in protein folding and in the formation of biomolecular condensates. Guided by a geometric criterion for isolating pi-pi contacts from classical molecular dynamics simulations of proteins, we use quantum mechanical energy decomposition analysis to determine the molecular interactions that stabilize different pi-pi contact motifs. We find that neutral pi-pi interactions in proteins are dominated by Pauli repulsion and London dispersion rather than repulsive quadrupole electrostatics, which is central to the textbook Hunter-Sanders model. This results in a notable lack of variability in the interaction profiles of neutral pi-pi contacts even with extreme changes in the dielectric medium, explaining the prevalence of pi-stacked arrangements in and between proteins. We also find interactions involving pi-containing anions and cations to be extremely malleable, interacting like neutral pi-pi contacts in polar media and like typical ion-pi interactions in nonpolar environments. Like-charged pairs such as arginine-arginine contacts are particularly sensitive to the polarity of their immediate surroundings and exhibit canonical pi-pi stacking behavior only if the interaction is mediated by environmental effects, such as aqueous solvation.

4.
J Chem Phys ; 156(19): 194109, 2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597660

RESUMEN

We develop a variational procedure for the iterative Hirshfeld (HI) partitioning scheme. The main practical advantage of having a variational framework is that it provides a formal and straightforward approach for imposing constraints (e.g., fixed charges on certain atoms or molecular fragments) when computing HI atoms and their properties. Unlike many other variants of the Hirshfeld partitioning scheme, HI charges do not arise naturally from the information-theoretic framework, but only as a reverse-engineered construction of the objective function. However, the procedure we use is quite general and could be applied to other problems as well. We also prove that there is always at least one solution to the HI equations, but we could not prove that its self-consistent equations would always converge for any given initial pro-atom charges. Our numerical assessment of the constrained iterative Hirshfeld method shows that it satisfies many desirable traits of atoms in molecules and has the potential to surpass existing approaches for adding constraints when computing atomic properties.

5.
J Comput Chem ; 42(6): 458-464, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33368350

RESUMEN

IOData is a free and open-source Python library for parsing, storing, and converting various file formats commonly used by quantum chemistry, molecular dynamics, and plane-wave density-functional-theory software programs. In addition, IOData supports a flexible framework for generating input files for various software packages. While designed and released for stand-alone use, its original purpose was to facilitate the interoperability of various modules in the HORTON and ChemTools software packages with external (third-party) molecular quantum chemistry and solid-state density-functional-theory packages. IOData is designed to be easy to use, maintain, and extend; this is why we wrote IOData in Python and adopted many principles of modern software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. This article is the official release note of the IOData library.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...