Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ther Deliv ; 12(10): 705-722, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34569269

RESUMEN

Multiple myeloma is the second most common hematological malignancy in adults, accounting for 2% of all cancer-related deaths in the UK. Current chemotherapy-based regimes are insufficient, as most patients relapse and develop therapy resistance. This review focuses on current novel antibody- and aptamer-based therapies aiming to overcome current therapy limitations, as well as their respective limitations and areas of improvement. The use of computer modeling methods, as a tool to study and improve ligand-receptor alignments for the use of novel therapy development will also be discussed, as it has become a rapid, reliable and comparatively inexpensive method of investigation.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico
2.
Int J Mol Sci ; 22(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073815

RESUMEN

Molecular dynamics (MD) simulations can provide a detailed view of molecule behaviour at an atomic level, which can be useful when attempting to interpret experiments or design new systems. The decapeptide gonadotrophin-releasing hormone I (GnRH-I) is known to control fertility in mammals for both sexes. It was previously shown that inoculation with silica nanoparticles (SiNPs) coated with GnRH-I makes an effective anti-fertility vaccine due to how the peptide adsorbs to the nanoparticle and is presented to the immune system. In this paper, we develop and employ a protocol to simulate the development of a GnRH-I peptide adlayer by allowing peptides to diffuse and adsorb in a staged series of trajectories. The peptides start the simulation in an immobile state in solution above the model silica surface, and are then released sequentially. This facile approach allows the adlayer to develop in a natural manner and appears to be quite versatile. We find that the GnRH-I adlayer tends to be sparse, with electrostatics dominating the interactions. The peptides are collapsed to the surface and are seemingly free to interact with additional solutes, supporting the interpretations of the GNRH-I/SiNP vaccine system.


Asunto(s)
Hormona Liberadora de Gonadotropina/química , Simulación de Dinámica Molecular , Precursores de Proteínas/química , Dióxido de Silicio/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...