Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Genom ; 2(12): 100213, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36778052

RESUMEN

The phylum Actinobacteria includes important human pathogens like Mycobacterium tuberculosis and Corynebacterium diphtheriae and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs. A comparison of gene functions reveals novel determinants of host-microbe interaction as well as environment-specific adaptations such as potential antimicrobial peptides. We identify plasmids and prophages across isolates and uncover extensive prophage diversity structured mainly by host taxonomy. Analysis of >80,000 biosynthetic gene clusters reveals that horizontal gene transfer and gene loss shape secondary metabolite repertoire across taxa. Our observations illustrate the essential role of and need for high-quality isolate genome sequences.

2.
Curr Microbiol ; 78(8): 3307-3312, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34181048

RESUMEN

A bacterial strain, Gram staining negative, aerobic, long rod, motile bacterium with flagellum, designated strain YIM 98829T, was isolated from the Aiding Lake in Xinjiang province, North-West China. The isolate produced oval subterminal endospores in swollen sporangia. The predominant menaquinone was MK-7. The cell wall peptidoglycan contained ornithine, serine, aspartic acid, glutamic acid, and alanine, while diaminopimelic acid could not be detected. The major whole-cell sugars contained xylose, glucose, galactose, and mannose. Diphosphatidylglycerol, phosphatidylglycerol, one unknown phospholipid, and two unidentified aminophospholipids were part of the polar lipid profile. Iso-C15:0 and anteiso-C15:0 were the major fatty acids. The DNA G + C content of the type strain was 38.0 mol%. Phylogenetic analysis indicated that the isolate belongs to the genus Alkalibacillus. However, it differed from its closest relatives, A. haloalkaliphilus DSM 5271T (97.04%), A. filiformis 4AGT (96.99%), and A. silvisoli BM2T (96.95%) in some physiological characteristics. DNA-DNA hybridization result indicated low levels of relatedness between strain YIM 98829T and A. haloalkaliphilus JCM 12303T (16.9%). On the basis of physiological, phenotypic, and chemotaxonomic data, strain YIM 98829T represents a novel species of genus Alkalibacillus, for which the name Alkalibacillus aidingensis sp. nov. is proposed. The type strain is YIM 98829T (= NBRC 114103T = CGMCC 1.17260T = DSM 112470T).


Asunto(s)
Ácidos Grasos , Lagos , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/genética , Ácidos Grasos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Artículo en Inglés | MEDLINE | ID: mdl-33835911

RESUMEN

In the course of screening the surface soils of ancient copper mines and smelters (East Harz, Germany) an aerobic, non-motile and halotolerant actinobacterium forming small rods or cocci was isolated. The strain designated F300T developed creamy to yellow colonies on tryptone soy agar and grew optimally at 28 °C, pH 7-8 and with 0.5-2 % (m/v) NaCl. Its peptidoglycan was of type A4α l-Lys-l-Glu (A11.54). The menaquinone profile was dominated by MK-8(II, III-H4) and contained minor amounts of MK-8(H2), MK-8(H6) and MK-9(H4). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, mono and diacylated phosphatidylinositol dimannosides, and components that were not fully characterized, including two phospholipids, two glycolipids and an uncharacterized lipid. Major whole-cell sugars were rhamnose and ribose. The fatty acid profile contained mainly iso and anteiso branched fatty acids (anteiso-C15 : 0, iso-C14 : 0) and aldehydes/dimethylacetals (i.e. not fatty acids). Sequence analysis of its genomic DNA and subsequent analysis of the data placed the isolate in the group currently defined by members of the genera Ruania and Haloactinobacterium (family Ruaniaceae, order Micrococcales) as a sister taxon to the previously described species Haloactinobacterium glacieicola, sharing an average nucleotide identity and average amino acid identity values of 85.3 and 85.7 %, respectively. Genotypic and chemotaxonomic analyses support the view that strain F300T (=DSM 108350T=CIP 111667T) is the type strain of a new genus and new species for which the name Occultella aeris gen. nov., sp. nov. is proposed. Based on revised chemotaxonomic and additional genome based data, it is necessary to discuss and evaluate the results in the light of the classification and nomenclature of members of the family Ruaniaceae, i.e. the genera Haloactinobacterium and Ruania. Consequently, the reclassification of Haloactinobacterium glacieicola as Occultella glacieicola comb. nov. and Haloactinobacterium album as Ruania alba comb. nov., with an emended description of the genus Ruania are proposed.


Asunto(s)
Actinobacteria/clasificación , Cobre , Filogenia , Microbiología del Suelo , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
4.
Front Microbiol ; 11: 1957, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973710

RESUMEN

A Gram-positive, coccoid, motile, aerobic bacterium, designated strain B12T was isolated from a Jet Propulsion Laboratory spacecraft assembly cleanroom, Pasadena, CA, United States. Strain B12T was resistant to chloramphenicol (100 µg/mL), and is a relatively slow grower (3-5 days optimal). Strain B12T was found to grow optimally at 28 to 32°C, pH 7 to 8, and 0.5% NaCl. Fatty acid methyl ester analysis showed that the major fatty acid of the strain B12T was anteiso C15 : 0 (66.3%), which is also produced by other Kineococcus species. However, arachidonic acid (C20 : 4 ω6,9,12,16c) was present in strain B12T and Kineococcus glutinatus YIM 75677T but absent in all other Kineococcus species. 16S rRNA analysis revealed that strain B12T was 97.9% similar to Kineococcus radiotolerans and falls within the Kineococcus clade. Low 16S rRNA gene sequence similarities (<94%) with other genera in the family Kineosporiaceae, including Angustibacter (93%), Kineosporia (94% to 95%), Pseudokineococcus (93%), Quadrisphaera (93%), and Thalassiella (94%) demonstrated that the strain B12T does not belong to these genera. Phylogenetic analysis of the gyrB gene show that all known Kineococcus species exhibited <86% sequence similarity with B12T. Multi-locus sequence and whole genome sequence analyses confirmed that B12T clades with other Kineococcus species. Average nucleotide identity of strain B12T were 75-78% with other Kineococcus species, while values ranged from 72-75% with species from other genera within family Kineosporiaceae. Average amino-acid identities were 66-72% with other Kineococcus species, while they ranged from 50-58% with species from other genera. The dDDH comparison of strain B12T genome with members of genera Kineococcus showed 20-22% similarity, again demonstrating that B12T is distantly related to other members of the genus. Furthermore, analysis of whole proteome deduced from WGS places strain B12T in order Kineosporiales, confirming that strain B12T is a novel member of family Kineosporiaceae. Based on these analyses and other genome characteristics, strain B12T is assigned to a novel species within the genus Kineococcus, and the name Kineococcus rubinsiae sp. nov., is proposed. The type strain is B12T (=FJII-L1-CM-PAB2T; NRRL B-65556T, DSM 110506T).

5.
Int J Syst Evol Microbiol ; 70(1): 71-76, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31622233

RESUMEN

Two Gram-stain-positive, motile, endospore-forming, aerobic strains, designated V44-8T and V47-23aT, were isolated from environmental air sampling at the vehicle assembly building at Cape Canaveral, Florida, where the Viking spacecraft were assembled. Growth was observed at pH 7-9 (optimum, pH 9) for strain V44-8T, and pH 5-10 (pH 9) for strain V47-23aT. Both strains displayed growth in 0-5 % NaCl with an optimum at 1 % for strain V44-8T; 0 % for strain V47-23aT. Strains V44-8T and V47-23aT grew optimally at 32 °C, (15-32 °C) and 25 °C (20-45 °C), respectively. The cell wall of both strains contained meso-diaminopimelic acid as the diagnostic diamino acid. Both strains contained phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C14 : 0 and iso-C15 : 0. Strain V47.23aT shared its highest 16S rRNA sequence similarity with Bacillus cavernae DSM-105484T at 96.9%, and V44.8T with Bacillus zeae DSM-103964T at 96.6 %. Based on their phenotypic characteristics and phylogenetic position inferred from 16S rRNA gene sequence analyses, the isolates were identified as being a members of the genus Bacillus that forms a separate clade when compared to close relatives. Average nucleotide identity and average amino acid identity values between strains V44-8T and DSM-103964T were 72.1% and 67.5 %; V47-23aT and DSM-105484T were 62.4% and 69.1%, respectively. Based on the phenotypic, genomic and biochemical data, strains V44-8T and V47-23aT represent two novel species in the genus Bacillus for which the names Bacillus glennii sp. nov. [type strain, V44-8T (=ATCC BAA-2860T =DSM 105192T)], and Bacillus saganii sp. nov. [V47-23aT (=ATCC BAA-2861T=DSM 105190T)] are proposed.


Asunto(s)
Microbiología del Aire , Bacillus/clasificación , Filogenia , Nave Espacial , Bacillus/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ambiente Controlado , Ácidos Grasos/química , Florida , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Astrobiology ; 18(11): 1425-1434, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30289268

RESUMEN

Submarine hydrothermal vents are inhabited by a variety of microorganisms capable of tolerating environmental extremes, making them ideal candidates to further expand our knowledge of the limitations for terrestrial life, including their ability to survive the exposure of spaceflight-relevant conditions. The spore resistance of two Bacillus spp. strains, APA and SBP3, isolated from two shallow vents off Panarea Island (Aeolian Islands, Italy), to artificial and environmental stressors (i.e., UVC radiation, X-rays, heat, space vacuum, hydrogen peroxide [H2O2], and low-pressure plasma), was compared with that of two close phylogenetic relatives (Bacillus horneckiae and Bacillus oceanisediminis). Additional comparisons were made with Bacillus sp. isolated from spacecraft assembly facilities (B. horneckiae, Bacillus pumilus SAFR-032, and Bacillus nealsonii) and the biodosimetry strain and space microbiology model organism Bacillus subtilis. Overall, a high degree of spore resistance to stressors was observed for the strains isolated from spacecraft assembly facilities, with an exceptional level of resistance seen by B. pumilus SAFR-032. The environmental isolate SBP3 showed a more robust spore resistance to UVC, X-rays, H2O2, dry heat, and space vacuum than the closely related B. horneckiae. Both strains (SBP3 and APA) were more thermotolerant than their relatives, B. horneckiae and B. oceanisediminis, respectively. SBP3 may have a novel use as a bacterial model organism for future interrogations into the potential of forward contamination in extraterrestrial environments (e.g., icy moons of Jupiter or Saturn), spacecraft sterilization and, broadly, microbial responses to spaceflight-relevant environmental stressors.


Asunto(s)
Bacillus/aislamiento & purificación , Descontaminación , Medio Ambiente Extraterrestre , Respiraderos Hidrotermales/microbiología , Nave Espacial , Esporas Bacterianas/aislamiento & purificación , Secuencia de Bases , Calor , Peróxido de Hidrógeno/análisis , Filogenia , Gases em Plasma/análisis , Presión , ARN Ribosómico 16S/genética , Rayos Ultravioleta , Rayos X
7.
Front Microbiol ; 9: 2007, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186281

RESUMEN

The application of phylogenetic taxonomic procedures led to improvements in the classification of bacteria assigned to the phylum Actinobacteria but even so there remains a need to further clarify relationships within a taxon that encompasses organisms of agricultural, biotechnological, clinical, and ecological importance. Classification of the morphologically diverse bacteria belonging to this large phylum based on a limited number of features has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft genome sequences of a large collection of actinobacterial type strains were used to infer phylogenetic trees from genome-scale data using principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families, and genera, as well as many species and a few subspecies were shown to be in need of revision leading to proposals for the recognition of 2 orders, 10 families, and 17 genera, as well as the transfer of over 100 species to other genera. In addition, emended descriptions are given for many species mainly involving the addition of data on genome size and DNA G+C content, the former can be considered to be a valuable taxonomic marker in actinobacterial systematics. Many of the incongruities detected when the results of the present study were compared with existing classifications had been recognized from 16S rRNA gene trees though whole-genome phylogenies proved to be much better resolved. The few significant incongruities found between 16S/23S rRNA and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences. Similarly good congruence was found between the discontinuous distribution of phenotypic properties and taxa delineated in the phylogenetic trees though diverse non-monophyletic taxa appeared to be based on the use of plesiomorphic character states as diagnostic features.

8.
Int J Syst Evol Microbiol ; 67(12): 5244-5251, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29087268

RESUMEN

Strain S27T is a Gram-stain-positive, regular rod-shaped, non-motile, non-spore-forming, yellow pigmented actinobacterium which was isolated from an aerated laboratory scale fermenter fed with wastes of a yeast factory. The strain was classified as Microbacterium sp. after the analysis of its peptidoglycan revealed a novel B-type structure established as variation B2δ by Hensel in 1984. As the combination of the peptidoglycan amino acids 2,4-diaminobutyric acid (Dab), threonine (Thr), glycine (Gly), alanine (Ala) and glutamic acid (Glu) is in disagreement with the current genus definition of Microbacterium but is typical of several Leucobacter species, the taxonomic status of strain S27T was re-examined by a polyphasic study. Comparative analyses of 16S rRNA gene sequences and the occurrence of l-Dab, d-Ala, l-Ala, Gly, l-Thr, d-Glu and lower amounts of l-Glu in the peptidoglycan in combination with the predominating menaquinones MK-11, MK-10 and MK-9, phosphatidylglycerol, and one unknown glycolipid as the major polar lipids (and trace amounts of diphosphatidylglycerol and an unknown phospholipid), a profile with anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C17 : 0 as major fatty acids and the G+C value of 70.1 mol% confirmed the affiliation to the genus Leucobacter and revealed that S27T (=DSM 20621T =CCM 8762T) is the type strain of a new species for which the name Leucobacter weissii sp. nov. is proposed. The availability of new data allows for an emended description of the genus Leucobacter.


Asunto(s)
Actinobacteria/clasificación , Filogenia , Aguas del Alcantarillado/microbiología , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Aminobutiratos/química , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Glucolípidos/química , Peptidoglicano/química , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
9.
Microbiome ; 5(1): 143, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-29070062

RESUMEN

BACKGROUND: The ExoMars 2016 mission, consisting of the Trace Gas Orbiter and the Schiaparelli lander, was launched on March 14 2016 from Baikonur, Kazakhstan and reached its destination in October 2016. The Schiaparelli lander was subject to strict requirements for microbial cleanliness according to the obligatory planetary protection policy. To reach the required cleanliness, the ExoMars 2016 flight hardware was assembled in a newly built, biocontrolled cleanroom complex at Thales Alenia Space in Turin, Italy. In this study, we performed microbiological surveys of the cleanroom facilities and the spacecraft hardware before and during the assembly, integration and testing (AIT) activities. METHODS: Besides the European Space Agency (ESA) standard bioburden assay, that served as a proxy for the microbiological contamination in general, we performed various alternative cultivation assays and utilised molecular techniques, including quantitative PCR and next generation sequencing, to assess the absolute and relative abundance and broadest diversity of microorganisms and their signatures in the cleanroom and on the spacecraft hardware. RESULTS: Our results show that the bioburden, detected microbial contamination and microbial diversity decreased continuously after the cleanroom was decontaminated with more effective cleaning agents and during the ongoing AIT. The studied cleanrooms and change room were occupied by very distinct microbial communities: Overall, the change room harboured a higher number and diversity of microorganisms, including Propionibacterium, which was found to be significantly increased in the change room. In particular, the so called alternative cultivation assays proved important in detecting a broader cultivable diversity than covered by the standard bioburden assay and thus completed the picture on the cleanroom microbiota. CONCLUSION: During the whole project, the bioburden stayed at acceptable level and did not raise any concern for the ExoMars 2016 mission. The cleanroom complex at Thales Alenia Space in Turin is an excellent example of how efficient microbiological control is performed.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Ambiente Controlado , Microbiota , Vuelo Espacial , Nave Espacial , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Contaminación de Equipos , Europa (Continente) , Exobiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Italia , ARN Ribosómico 16S , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
10.
Genome Announc ; 5(42)2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29051233

RESUMEN

The Oligo-Mouse-Microbiota (Oligo-MM12) is a community of 12 mouse intestinal bacteria to be used for microbiome research in gnotobiotic mice. We present here the high-quality whole genome sequences of the Oligo-MM12 strains, which were obtained by combining the accuracy of the Illumina platforms with the long reads of the PacBio technology.

11.
PLoS One ; 12(10): e0185178, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29069099

RESUMEN

The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today.


Asunto(s)
Marte , Estrés Fisiológico , Yersinia/fisiología , Frío , Desecación , Relación Dosis-Respuesta en la Radiación , Oxidación-Reducción , ARN Ribosómico 16S/genética , Sales (Química) , Rayos X , Yersinia/clasificación , Yersinia/genética , Yersinia/efectos de la radiación
12.
Nat Microbiol ; 2: 16215, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27869789

RESUMEN

Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM12), representing members of the major bacterial phyla in the murine gut, was selected. This community was stable over consecutive mouse generations and provided colonization resistance against S. Tm infection, albeit not to the degree of a conventional complex microbiota. Comparative (meta)genome analyses identified functions represented in a conventional microbiome but absent from the Oligo-MM12. By genome-informed design, we created an improved version of the Oligo-MM community harbouring three facultative anaerobic bacteria from the mouse intestinal bacterial collection (miBC) that provided conventional-like colonization resistance. In conclusion, we have established a highly versatile experimental system that showed efficacy in an enteric infection model. Thus, in combination with exhaustive bacterial strain collections and systems-based approaches, genome-guided design can be used to generate insights into microbe-microbe and microbe-host interactions for the investigation of ecological and disease-relevant mechanisms in the intestine.


Asunto(s)
Antibiosis , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Salmonelosis Animal/prevención & control , Salmonella typhimurium/fisiología , Animales , Ratones
14.
Nat Microbiol ; 1(10): 16131, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27670113

RESUMEN

Intestinal bacteria influence mammalian physiology, but many types of bacteria are still uncharacterized. Moreover, reference strains of mouse gut bacteria are not easily available, although mouse models are extensively used in medical research. These are major limitations for the investigation of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (miBC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50-75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota-host interactions in health and disease, as it will facilitate targeted colonization and molecular studies. The resource is available at www.dsmz.de/miBC.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Bancos de Muestras Biológicas , Microbioma Gastrointestinal/fisiología , Especificidad del Huésped , Intestinos/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Ratones
15.
Stand Genomic Sci ; 10: 48, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26380636

RESUMEN

Bacteroides barnesiae Lan et al. 2006 is a species of the genus Bacteroides, which belongs to the family Bacteroidaceae. Strain BL2(T) is of interest because it was isolated from the gut of a chicken and the growing awareness that the anaerobic microbiota of the caecum is of benefit for the host and may impact poultry farming. The 3,621,509 bp long genome with its 3,059 protein-coding and 97 RNA genes is a part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.

16.
Stand Genomic Sci ; 10: 21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26203333

RESUMEN

Leucobacter chironomi strain MM2LB(T) (Halpern et al., Int J Syst Evol Microbiol 59:665-70 2009) is a Gram-positive, rod shaped, non-motile, aerobic, chemoorganotroph bacterium. L. chironomi belongs to the family Microbacteriaceae, a family within the class Actinobacteria. Strain MM2LB(T) was isolated from a chironomid (Diptera; Chironomidae) egg mass that was sampled from a waste stabilization pond in northern Israel. In a phylogenetic tree based on 16S rRNA gene sequences, strain MM2LB(T) formed a distinct branch within the radiation encompassing the genus Leucobacter. Here we describe the features of this organism, together with the complete genome sequence and annotation. The DNA GC content is 69.90%. The chromosome length is 2,964,712 bp. It encodes 2,690 proteins and 61 RNA genes. L. chironomi genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.

17.
Sci Rep ; 5: 9156, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25778463

RESUMEN

Space agencies maintain highly controlled cleanrooms to ensure the demands of planetary protection. To study potential effects of microbiome control, we analyzed microbial communities in two particulate-controlled cleanrooms (ISO 5 and ISO 8) and two vicinal uncontrolled areas (office, changing room) by cultivation and 16S rRNA gene amplicon analysis (cloning, pyrotagsequencing, and PhyloChip G3 analysis). Maintenance procedures affected the microbiome on total abundance and microbial community structure concerning richness, diversity and relative abundance of certain taxa. Cleanroom areas were found to be mainly predominated by potentially human-associated bacteria; archaeal signatures were detected in every area. Results indicate that microorganisms were mainly spread from the changing room (68%) into the cleanrooms, potentially carried along with human activity. The numbers of colony forming units were reduced by up to ~400 fold from the uncontrolled areas towards the ISO 5 cleanroom, accompanied with a reduction of the living portion of microorganisms from 45% (changing area) to 1% of total 16S rRNA gene signatures as revealed via propidium monoazide treatment of the samples. Our results demonstrate the strong effects of cleanroom maintenance on microbial communities in indoor environments and can be used to improve the design and operation of biologically controlled cleanrooms.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Ambiente Controlado , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Análisis por Conglomerados , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenoma , Metagenómica/métodos , ARN Ribosómico 16S/genética
18.
Open Microbiol J ; 8: 78-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25279017

RESUMEN

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) protein analysis, automated ribotyping, and phenotypic tests (e.g., cell morphology, gas production from glucose, growth and acid production on homofermemtative-heterofermentative differential (HHD) agar medium, sugar fermentation patterns) were used to identify 23 lactic acid bacteria (LAB) isolated from fermented cereal foods available in Abidjan, Côte d'Ivoire. Pediococcus acidilactici (56.5%), Lactobacillus fermentum (30.4%), L. salivarius (4.3%), P. pentosaceus (4.3%) and L. plantarum subsp. plantarum (4.3%) were the species and subspecies identified. Protein based identification was confirmed by automated ribotyping for selected isolates and was similar to that provided by the phenotypic characterization. MALDI-TOF MS protein analysis provided a high level of discrimination among the isolates and could be used for the rapid screening of LAB starter cultures.

19.
Int J Syst Evol Microbiol ; 64(Pt 10): 3441-3446, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25030518

RESUMEN

A bacterial strain, designated 1P10ME(T), which was resistant to extreme doses of ionizing radiation, pale-pink, non-motile, and a tetrad-forming coccoid was isolated from a cleanroom at the Kennedy Space Center, where the Phoenix spacecraft was assembled. Strain 1P10ME(T) showed optimum growth at 30 °C, with a pH range for growth of 6.5-9.0 and was highly sensitive to sodium chloride, growing only in medium with no added NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1P10ME(T) represents a novel member of the genus Deinococcus, with low sequence similarities (<93.5%) to recognized species of the genus Deinococcus. The predominant cellular fatty acid was C15:1ω6c. This novel strain exhibits extreme resistance to gamma radiation (D10 >8 kGy) and UV (D10 >1000 Jm(-2)). The results of our polyphasic taxonomic analyses suggest that strain 1P10ME(T) represents a novel species of the genus Deinococcus, for which the name Deinococcus phoenicis sp. nov. is proposed. The type strain is 1P10ME(T) ( = NRRL B-59546(T) = DSM 27173(T)).


Asunto(s)
Deinococcus/clasificación , Deinococcus/efectos de la radiación , Ambiente Controlado , Filogenia , Composición de Base , ADN Bacteriano/genética , Deinococcus/genética , Deinococcus/aislamiento & purificación , Ácidos Grasos/química , Florida , Rayos gamma , Datos de Secuencia Molecular , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
20.
Int J Syst Evol Microbiol ; 64(Pt 1): 88-94, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24021730

RESUMEN

Two strains, 8-4-E12(T) and 8-4-E13(T), were isolated from a biowaste composting reactor. Based on 16S rRNA gene sequences, both strains belong to the genus Bacillus. Strain 8-4-E12(T) was most closely related to the type strains of Bacillus shackletonii, B. acidicola, B. sporothermodurans and B. oleronius (96.4, 96.3, 96.0 and 95.6 % 16S rRNA gene similarity, respectively), whereas strain 8-4-E13(T) was most closely related to the type strain of Bacillus humi (96.5 % sequence similarity). Strains 8-4-E12(T) and 8-4-E13(T) shared 94 % 16S rRNA gene sequence similarity. The fatty acid profile of strain 8-4-E12(T) was dominated by saturated iso- and anteiso-branched fatty acids (iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0), and also contained considerable amounts of C16 : 0. The fatty acid profile of strain 8-4-E13(T) showed a predominance of iso-C15 : 0 (65 %), with smaller amounts of other saturated branched-chain fatty acids along with an unsaturated alcohol. Both strains contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major polar lipids. Additionally, strain 8-4-E12(T) contained an unknown lipid and strain 8-4-E13(T) two unknown (amino-)phospholipids. The diagnostic diamino acid found in the cell-wall peptidoglycan of 8-4-E12(T) and 8-4-E13(T) was meso-diaminopimelic acid. The predominant menaquinone was MK-7. The results of physiological and biochemical tests also allowed phenotypic differentiation of the two strains from each other and from related Bacillus species. On the basis of their phylogenetic, phenotypic and chemotaxonomic properties, strains 8-4-E12(T) and 8-4-E13(T) represent novel species of the genus Bacillus, for which the names Bacillus pervagus sp. nov. (type strain 8-4-E12(T) = DSM 23947(T) = LMG 27601(T)) and Bacillus andreesenii sp. nov. (type strain 8-4-E13(T) = DSM 23948(T) = LMG 27602(T)) are proposed.


Asunto(s)
Bacillus/clasificación , Reactores Biológicos/microbiología , Filogenia , Microbiología del Suelo , Bacillus/genética , Bacillus/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfatidiletanolaminas/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Eliminación de Residuos , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...