Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2533, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137910

RESUMEN

We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates. In an external replication, proteins and lipids are associated with diabetes incidence and prevalence. NogoR/RTN4R injection improved glucose tolerance in high fat-fed male mice but impaired it in male db/db mice. High NogoR levels led to islet cell apoptosis, and IL-18R antagonised inflammatory IL-18 signalling towards nuclear factor kappa-B in vitro. This comprehensive, multi-disciplinary approach thus identifies biomarkers with potential prognostic utility, provides evidence for possible disease mechanisms, and identifies potential therapeutic avenues to slow diabetes progression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Ratones , Animales , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Glucemia/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Lípidos , Biomarcadores/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo
2.
Biochem Soc Trans ; 49(5): 2153-2161, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34581756

RESUMEN

Type 2 diabetes (T2D) is a widespread disease affecting millions in every continental population. Pancreatic ß-cells are central to the regulation of circulating glucose, but failure in the maintenance of their mass and/or functional identity leads to T2D. Long non-coding RNAs (lncRNAs) represent a relatively understudied class of transcripts which growing evidence implicates in diabetes pathogenesis. T2D-associated single nucleotide polymorphisms (SNPs) have been identified in lncRNA loci, although these appear to function primarily through regulating ß-cell proliferation. In the last decade, over 1100 lncRNAs have been catalogued in islets and the roles of a few have been further investigated, definitively linking them to ß-cell function. These studies show that lncRNAs can be developmentally regulated and show highly tissue-specific expression. lncRNAs regulate neighbouring ß-cell-specific transcription factor expression, with knockdown or overexpression of lncRNAs impacting a network of other key genes and pathways. Finally, gene expression analysis in studies of diabetic models have uncovered a number of lncRNAs with roles in ß-cell function. A deeper understanding of these lncRNA roles in maintaining ß-cell identity, and its deterioration, is required to fully appreciate the ß-cell molecular network and to advance novel diabetes treatments.


Asunto(s)
Células Secretoras de Insulina/citología , ARN Largo no Codificante/fisiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Perfilación de la Expresión Génica , Humanos , Células Secretoras de Insulina/metabolismo , ARN Largo no Codificante/genética , Factores de Transcripción/metabolismo
3.
Diabetes ; 70(11): 2683-2693, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34376475

RESUMEN

Type 2 diabetes is a multifactorial disease with multiple underlying aetiologies. To address this heterogeneity, investigators of a previous study clustered people with diabetes according to five diabetes subtypes. The aim of the current study is to investigate the etiology of these clusters by comparing their molecular signatures. In three independent cohorts, in total 15,940 individuals were clustered based on five clinical characteristics. In a subset, genetic (N = 12,828), metabolomic (N = 2,945), lipidomic (N = 2,593), and proteomic (N = 1,170) data were obtained in plasma. For each data type, each cluster was compared with the other four clusters as the reference. The insulin-resistant cluster showed the most distinct molecular signature, with higher branched-chain amino acid, diacylglycerol, and triacylglycerol levels and aberrant protein levels in plasma were enriched for proteins in the intracellular PI3K/Akt pathway. The obese cluster showed higher levels of cytokines. The mild diabetes cluster with high HDL showed the most beneficial molecular profile with effects opposite of those seen in the insulin-resistant cluster. This study shows that clustering people with type 2 diabetes can identify underlying molecular mechanisms related to pancreatic islets, liver, and adipose tissue metabolism. This provides novel biological insights into the diverse aetiological processes that would not be evident when type 2 diabetes is viewed as a homogeneous disease.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Análisis por Conglomerados , Estudios de Cohortes , Estudios Transversales , Humanos , Resistencia a la Insulina
4.
Diabetologia ; 64(9): 1982-1989, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34110439

RESUMEN

AIMS/HYPOTHESIS: Five clusters based on clinical characteristics have been suggested as diabetes subtypes: one autoimmune and four subtypes of type 2 diabetes. In the current study we replicate and cross-validate these type 2 diabetes clusters in three large cohorts using variables readily measured in the clinic. METHODS: In three independent cohorts, in total 15,940 individuals were clustered based on age, BMI, HbA1c, random or fasting C-peptide, and HDL-cholesterol. Clusters were cross-validated against the original clusters based on HOMA measures. In addition, between cohorts, clusters were cross-validated by re-assigning people based on each cohort's cluster centres. Finally, we compared the time to insulin requirement for each cluster. RESULTS: Five distinct type 2 diabetes clusters were identified and mapped back to the original four All New Diabetics in Scania (ANDIS) clusters. Using C-peptide and HDL-cholesterol instead of HOMA2-B and HOMA2-IR, three of the clusters mapped with high sensitivity (80.6-90.7%) to the previously identified severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD) and mild obesity-related diabetes (MOD) clusters. The previously described ANDIS mild age-related diabetes (MARD) cluster could be mapped to the two milder groups in our study: one characterised by high HDL-cholesterol (mild diabetes with high HDL-cholesterol [MDH] cluster), and the other not having any extreme characteristic (mild diabetes [MD]). When these two milder groups were combined, they mapped well to the previously labelled MARD cluster (sensitivity 79.1%). In the cross-validation between cohorts, particularly the SIDD and MDH clusters cross-validated well, with sensitivities ranging from 73.3% to 97.1%. SIRD and MD showed a lower sensitivity, ranging from 36.1% to 92.3%, where individuals shifted from SIRD to MD and vice versa. People belonging to the SIDD cluster showed the fastest progression towards insulin requirement, while the MDH cluster showed the slowest progression. CONCLUSIONS/INTERPRETATION: Clusters based on C-peptide instead of HOMA2 measures resemble those based on HOMA2 measures, especially for SIDD, SIRD and MOD. By adding HDL-cholesterol, the MARD cluster based upon HOMA2 measures resulted in the current clustering into two clusters, with one cluster having high HDL levels. Cross-validation between cohorts showed generally a good resemblance between cohorts. Together, our results show that the clustering based on clinical variables readily measured in the clinic (age, HbA1c, HDL-cholesterol, BMI and C-peptide) results in informative clusters that are representative of the original ANDIS clusters and stable across cohorts. Adding HDL-cholesterol to the clustering resulted in the identification of a cluster with very slow glycaemic deterioration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Glucemia , Péptido C , Humanos , Insulina
5.
Diabetologia ; 63(10): 1990-1998, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32894309

RESUMEN

All forms of diabetes mellitus involve the loss or dysfunction of pancreatic beta cells, with the former predominating in type 1 diabetes and the latter in type 2 diabetes. Deeper understanding of the coupling mechanisms that link glucose metabolism in these cells to the control of insulin secretion is therefore likely to be essential to develop new therapies. Beta cells display a remarkable metabolic specialisation, expressing high levels of metabolic sensing enzymes, including the glucose transporter GLUT2 (encoded by SLC2A2) and glucokinase (encoded by GCK). Genetic evidence flowing from both monogenic forms of diabetes and genome-wide association studies for the more common type 2 diabetes, supports the importance for normal glucose-stimulated insulin secretion of metabolic signalling via altered ATP generation, while also highlighting unsuspected roles for Zn2+ storage, intracellular lipid transfer and other processes. Intriguingly, genes involved in non-oxidative metabolic fates of the sugar, such as those for lactate dehydrogenase (LDHA) and monocarboxylate transporter-1 ([MCT-1] SLC16A1), as well as the acyl-CoA thioesterase (ACOT7) and others, are selectively repressed ('disallowed') in beta cells. Furthermore, mutations in genes critical for mitochondrial oxidative metabolism, such as TRL-CAG1-7 encoding tRNALeu, are linked to maternally inherited forms of diabetes. Correspondingly, impaired Ca2+ uptake into mitochondria, or collapse of a normally interconnected mitochondrial network, are associated with defective insulin secretion. Here, we suggest that altered mitochondrial metabolism may also impair beta cell-beta cell communication. Thus, we argue that defective oxidative glucose metabolism is central to beta cell failure in diabetes, acting both at the level of single beta cells and potentially across the whole islet to impair insulin secretion. Graphical abstract.


Asunto(s)
Comunicación Celular , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Represión Epigenética , Glucoquinasa , Transportador de Glucosa de Tipo 2 , Humanos , Metabolismo de los Lípidos , Oxidación-Reducción , Zinc/metabolismo
6.
Diabetologia ; 63(7): 1368-1381, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32350566

RESUMEN

AIMS/HYPOTHESIS: Mitochondrial oxidative metabolism is central to glucose-stimulated insulin secretion (GSIS). Whether Ca2+ uptake into pancreatic beta cell mitochondria potentiates or antagonises this process is still a matter of debate. Although the mitochondrial Ca2+ importer (MCU) complex is thought to represent the main route for Ca2+ transport across the inner mitochondrial membrane, its role in beta cells has not previously been examined in vivo. METHODS: Here, we inactivated the pore-forming subunit of the MCU, encoded by Mcu, selectively in mouse beta cells using Ins1Cre-mediated recombination. Whole or dissociated pancreatic islets were isolated and used for live beta cell fluorescence imaging of cytosolic or mitochondrial Ca2+ concentration and ATP production in response to increasing glucose concentrations. Electrophysiological recordings were also performed on whole islets. Serum and blood samples were collected to examine oral and i.p. glucose tolerance. RESULTS: Glucose-stimulated mitochondrial Ca2+ accumulation (p< 0.05), ATP production (p< 0.05) and insulin secretion (p< 0.01) were strongly inhibited in beta cell-specific Mcu-null (ßMcu-KO) animals, in vitro, as compared with wild-type (WT) mice. Interestingly, cytosolic Ca2+ concentrations increased (p< 0.001), whereas mitochondrial membrane depolarisation improved in ßMcu-KO animals. ßMcu-KO mice displayed impaired in vivo insulin secretion at 5 min (p< 0.001) but not 15 min post-i.p. injection of glucose, whilst the opposite phenomenon was observed following an oral gavage at 5 min. Unexpectedly, glucose tolerance was improved (p< 0.05) in young ßMcu-KO (<12 weeks), but not in older animals vs WT mice. CONCLUSIONS/INTERPRETATION: MCU is crucial for mitochondrial Ca2+ uptake in pancreatic beta cells and is required for normal GSIS. The apparent compensatory mechanisms that maintain glucose tolerance in ßMcu-KO mice remain to be established.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Glucosa/metabolismo , Secreción de Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Mol Metab ; 40: 101015, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32416313

RESUMEN

OBJECTIVE: Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the ß-cell, impaired glucose-induced insulin secretion, and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids and thus the pathways through which STARD10 regulates ß-cell function are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the ß-cell and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. METHODS: We used isolated islets from mice deleted selectively in the ß-cell for Stard10 (ßStard10KO) and performed electron microscopy, pulse-chase, RNA sequencing, and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in the INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay was performed on purified STARD10 protein. RESULTS: ßStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of "rod-like" dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. The solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3' position. Lipidomic analysis of ßStard10KO islets demonstrated changes in phosphatidylinositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide-binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in ßStard10KO islets. CONCLUSION: Our data indicate that STARD10 binds to, and may transport, phosphatidylinositides, influencing membrane lipid composition, insulin granule biosynthesis, and insulin processing.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Fosfoproteínas/metabolismo , Alelos , Animales , Proteínas Portadoras/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Femenino , Insulina/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , Fosfatidilinositoles/metabolismo , Fosfoproteínas/genética , Unión Proteica , Proteómica , Factores de Riesgo , Vesículas Secretoras/metabolismo
8.
Nat Metab ; 1(6): 615-629, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-32694805

RESUMEN

Pancreatic ß-cells form highly connected networks within isolated islets. Whether this behaviour pertains to the situation in vivo, after innervation and during continuous perfusion with blood, is unclear. In the present study, we used the recombinant Ca2+ sensor GCaMP6 to assess glucose-regulated connectivity in living zebrafish Danio rerio, and in murine or human islets transplanted into the anterior eye chamber. In each setting, Ca2+ waves emanated from temporally defined leader ß-cells, and three-dimensional connectivity across the islet increased with glucose stimulation. Photoablation of zebrafish leader cells disrupted pan-islet signalling, identifying these as likely pacemakers. Correspondingly, in engrafted mouse islets, connectivity was sustained during prolonged glucose exposure, and super-connected 'hub' cells were identified. Granger causality analysis revealed a controlling role for temporally defined leaders, and transcriptomic analyses revealed a discrete hub cell fingerprint. We thus define a population of regulatory ß-cells within coordinated islet networks in vivo. This population may drive Ca2+ dynamics and pulsatile insulin secretion.


Asunto(s)
Calcio/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Glucosa/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Transducción de Señal , Pez Cebra/metabolismo
9.
Diabetes Obes Metab ; 19 Suppl 1: 30-41, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28466490

RESUMEN

Ca2+ is the key intracellular regulator of insulin secretion, acting in the ß-cell as the ultimate trigger for exocytosis. In response to high glucose, ATP-sensitive K+ channel closure and plasma membrane depolarization engage a sophisticated machinery to drive pulsatile cytosolic Ca2+ changes. Voltage-gated Ca2+ channels, Ca2+ -activated K+ channels and Na+ /Ca2+ exchange all play important roles. The use of targeted Ca2+ probes has revealed that during each cytosolic Ca2+ pulse, uptake of Ca2+ by mitochondria, endoplasmic reticulum (ER), secretory granules and lysosomes fine-tune cytosolic Ca2+ dynamics and control organellar function. For example, changes in the expression of the Ca2+ -binding protein Sorcin appear to provide a link between ER Ca2+ levels and ER stress, affecting ß-cell function and survival. Across the islet, intercellular communication between highly interconnected "hubs," which act as pacemaker ß-cells, and subservient "followers," ensures efficient insulin secretion. Loss of connectivity is seen after the deletion of genes associated with type 2 diabetes (T2D) and follows metabolic and inflammatory insults that characterize this disease. Hubs, which typically comprise ~1%-10% of total ß-cells, are repurposed for their specialized role by expression of high glucokinase (Gck) but lower Pdx1 and Nkx6.1 levels. Single cell-omics are poised to provide a deeper understanding of the nature of these cells and of the networks through which they communicate. New insights into the control of both the intra- and intercellular Ca2+ dynamics may thus shed light on T2D pathology and provide novel opportunities for therapy.


Asunto(s)
Señalización del Calcio , Comunicación Celular , Islotes Pancreáticos/metabolismo , Modelos Biológicos , Animales , Membrana Celular/enzimología , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Exocitosis , Uniones Comunicantes/enzimología , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/enzimología , Mitocondrias/enzimología , Mitocondrias/metabolismo , Vías Secretoras
10.
Front Genet ; 8: 41, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443133

RESUMEN

We and others have previously identified a group of genes, dubbed "disallowed," whose expression is markedly lower in pancreatic islets than in other mammalian cell types. Forced mis-expression of several members of this family leads to defective insulin secretion, demonstrating the likely importance of disallowance for normal beta cell function. Up to now, transcriptomic comparisons have been based solely on data from whole islets. This raises the possibilities that (a) there may be important differences in the degree of disallowance of family members between beta and other either neuroendocrine cells; (b) beta (or alpha) cell disallowed genes may have gone undetected. To address this issue, we survey here recent massive parallel sequencing (RNA-Seq) datasets from purified mouse and human islet cells. Our analysis reveals that the most strongly disallowed genes are similar in beta and alpha cells, with 11ß-hydroxysteroid dehydrogenase (Hsd11b1) mRNA being essentially undetectable in both cell types. The analysis also reveals that several genes involved in cellular proliferation, including Yap1 and Igfbp4, and previously assumed to be disallowed in both beta and alpha cells, are selectively repressed only in the beta cell. The latter finding supports the view that beta cell growth is selectively restricted in adults, providing a mechanism to avoid excessive insulin production and the risk of hypoglycaemia. Approaches which increase the expression or activity of selected disallowed genes in the beta cell may provide the basis for novel regenerative therapies in type 2 diabetes.

11.
J Biol Chem ; 292(21): 8892-8906, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28377501

RESUMEN

Heterozygous mutations in the human paired box gene PAX6 lead to impaired glucose tolerance. Although embryonic deletion of the Pax6 gene in mice leads to loss of most pancreatic islet cell types, the functional consequences of Pax6 loss in adults are poorly defined. Here we developed a mouse line in which Pax6 was selectively inactivated in ß cells by crossing animals with floxed Pax6 alleles to mice expressing the inducible Pdx1CreERT transgene. Pax6 deficiency, achieved by tamoxifen injection, caused progressive hyperglycemia. Although ß cell mass was preserved 8 days post-injection, total insulin content and insulin:chromogranin A immunoreactivity were reduced by ∼60%, and glucose-stimulated insulin secretion was eliminated. RNA sequencing and quantitative real-time PCR analyses revealed that, although the expression of key ß cell genes, including Ins2, Slc30a8, MafA, Slc2a2, G6pc2, and Glp1r, was reduced after Pax6 deletion, that of several genes that are usually selectively repressed ("disallowed") in ß cells, including Slc16a1, was increased. Assessed in intact islets, glucose-induced ATP:ADP increases were significantly reduced (p < 0.05) in ßPax6KO versus control ß cells, and the former displayed attenuated increases in cytosolic Ca2+ Unexpectedly, glucose-induced increases in intercellular connectivity were enhanced after Pax6 deletion, consistent with increases in the expression of the glucose sensor glucokinase, but decreases in that of two transcription factors usually expressed in fully differentiated ß-cells, Pdx1 and Nkx6.1, were observed in islet "hub" cells. These results indicate that Pax6 is required for the functional identity of adult ß cells. Furthermore, deficiencies in ß cell glucose sensing are likely to contribute to defective insulin secretion in human carriers of PAX6 mutations.


Asunto(s)
Adenosina Trifosfato/metabolismo , Señalización del Calcio , Calcio/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Factor de Transcripción PAX6/biosíntesis , Adenosina Trifosfato/genética , Animales , Humanos , Ratones , Ratones Noqueados , Factor de Transcripción PAX6/genética
12.
Am J Hum Genet ; 100(2): 238-256, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28132686

RESUMEN

Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in ß cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, ß-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult ß cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in ß cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the ß cell.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Insulina/metabolismo , Fosfoproteínas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Diabetes Mellitus Tipo 2/sangre , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica , Variación Genética , Homeostasis , Humanos , Insulina/sangre , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Ratones , Proinsulina/sangre , Proinsulina/metabolismo , Sitios de Carácter Cuantitativo , Transcriptoma
13.
Am J Physiol Endocrinol Metab ; 311(2): E488-507, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27329800

RESUMEN

Single nucleotide polymorphisms (SNPs) close to the VPS13C, C2CD4A and C2CD4B genes on chromosome 15q are associated with impaired fasting glucose and increased risk of type 2 diabetes. eQTL analysis revealed an association between possession of risk (C) alleles at a previously implicated causal SNP, rs7163757, and lowered VPS13C and C2CD4A levels in islets from female (n = 40, P < 0.041) but not from male subjects. Explored using promoter-reporter assays in ß-cells and other cell lines, the risk variant at rs7163757 lowered enhancer activity. Mice deleted for Vps13c selectively in the ß-cell were generated by crossing animals bearing a floxed allele at exon 1 to mice expressing Cre recombinase under Ins1 promoter control (Ins1Cre). Whereas Vps13c(fl/fl):Ins1Cre (ßVps13cKO) mice displayed normal weight gain compared with control littermates, deletion of Vps13c had little effect on glucose tolerance. Pancreatic histology revealed no significant change in ß-cell mass in KO mice vs. controls, and glucose-stimulated insulin secretion from isolated islets was not altered in vitro between control and ßVps13cKO mice. However, a tendency was observed in female null mice for lower insulin levels and ß-cell function (HOMA-B) in vivo. Furthermore, glucose-stimulated increases in intracellular free Ca(2+) were significantly increased in islets from female KO mice, suggesting impaired Ca(2+) sensitivity of the secretory machinery. The present data thus provide evidence for a limited role for changes in VPS13C expression in conferring altered disease risk at this locus, particularly in females, and suggest that C2CD4A may also be involved.


Asunto(s)
Proteínas de Unión al Calcio/genética , Intolerancia a la Glucosa/genética , Células Secretoras de Insulina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas/genética , Animales , Western Blotting , Calcio/metabolismo , Diabetes Mellitus Tipo 2/genética , Femenino , Células Secretoras de Glucagón/patología , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Noqueados , Páncreas/patología , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores Sexuales , Proteínas de Transporte Vesicular
14.
Cell Metab ; 23(5): 821-36, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27133129

RESUMEN

Despite significant advances in our understanding of the biology determining systemic energy homeostasis, the treatment of obesity remains a medical challenge. Activation of AMP-activated protein kinase (AMPK) has been proposed as an attractive strategy for the treatment of obesity and its complications. AMPK is a conserved, ubiquitously expressed, heterotrimeric serine/threonine kinase whose short-term activation has multiple beneficial metabolic effects. Whether these translate into long-term benefits for obesity and its complications is unknown. Here, we observe that mice with chronic AMPK activation, resulting from mutation of the AMPK γ2 subunit, exhibit ghrelin signaling-dependent hyperphagia, obesity, and impaired pancreatic islet insulin secretion. Humans bearing the homologous mutation manifest a congruent phenotype. Our studies highlight that long-term AMPK activation throughout all tissues can have adverse metabolic consequences, with implications for pharmacological strategies seeking to chronically activate AMPK systemically to treat metabolic disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/patología , Obesidad/enzimología , Adiposidad/genética , Adulto , Envejecimiento/patología , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético/genética , Activación Enzimática , Conducta Alimentaria , Femenino , Heterocigoto , Humanos , Hiperfagia/complicaciones , Hiperfagia/enzimología , Hiperfagia/genética , Hiperfagia/patología , Hipotálamo/metabolismo , Insulina/metabolismo , Masculino , Ratones , Mitocondrias/metabolismo , Mutación/genética , Neuronas/metabolismo , Obesidad/sangre , Obesidad/complicaciones , Obesidad/patología , Fosforilación Oxidativa , Receptores de Ghrelina/metabolismo , Ribosomas/metabolismo , Transducción de Señal/genética , Transcriptoma/genética , Regulación hacia Arriba/genética
15.
Biochem J ; 473(9): 1165-78, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26936970

RESUMEN

The 2-oxoglutarate dehydrogenase (OGDH) complex is an important control point in vertebrate mitochondrial oxidative metabolism, including in the citrate cycle and catabolism of alternative fuels including glutamine. It is subject to allosteric regulation by NADH and the ATP/ADP ratio, and by Ca(2+) through binding to the E1 subunit. The latter involves a unique Ca(2+)-binding site which includes D(114)ADLD (site 1). Here, we describe three splice variants of E1 in which either the exon expressing this site is replaced with another exon (loss of site 1, LS1) or an additional exon is expressed leading to the insertion of 15 amino acids just downstream of site 1 (Insert), or both changes occur together (LS1/Insert). We show that all three variants are essentially Ca(2+)-insensitive. Comparison of massive parallel sequence (RNA-Seq) databases demonstrates predominant expression of the Ca(2+)-sensitive archetype form in heart and skeletal muscle, but substantial expression of the Ca(2+)-insensitive variants in brain, pancreatic islets and other tissues. Detailed proteomic and activity studies comparing OGDH complexes from rat heart and brain confirmed the substantial difference in expression between these tissues. The evolution of OGDH variants was explored using bioinformatics, and this indicated that Ca(2+)-sensitivity arose with the emergence of chordates. In all species examined, this was associated with the co-emergence of Ca(2+)-insensitive variants suggesting a retained requirement for the latter in some settings. Tissue-specific expression of OGDH splice variants may thus provide a mechanism that tunes the control of the enzyme to the specialized metabolic and signalling needs of individual cell types.


Asunto(s)
Empalme Alternativo/fisiología , Carboxiliasas/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Complejo Cetoglutarato Deshidrogenasa/biosíntesis , Animales , Carboxiliasas/genética , Humanos , Complejo Cetoglutarato Deshidrogenasa/genética , Masculino , Especificidad de Órganos/fisiología , Ratas , Ratas Wistar
16.
Diabetes ; 65(5): 1268-82, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26861785

RESUMEN

Encoding acyl-CoA thioesterase-7 (Acot7) is one of ∼60 genes expressed ubiquitously across tissues but relatively silenced, or disallowed, in pancreatic ß-cells. The capacity of ACOT7 to hydrolyze long-chain acyl-CoA esters suggests potential roles in ß-oxidation, lipid biosynthesis, signal transduction, or insulin exocytosis. We explored the physiological relevance of ß-cell-specific Acot7 silencing by re-expressing ACOT7 in these cells. ACOT7 overexpression in clonal MIN6 and INS1(832/13) ß-cells impaired insulin secretion in response to glucose plus fatty acids. Furthermore, in a panel of transgenic mouse lines, we demonstrate that overexpression of mitochondrial ACOT7 selectively in the adult ß-cell reduces glucose tolerance dose dependently and impairs glucose-stimulated insulin secretion. By contrast, depolarization-induced secretion was unaffected, arguing against a direct action on the exocytotic machinery. Acyl-CoA levels, ATP/ADP increases, membrane depolarization, and Ca(2+) fluxes were all markedly reduced in transgenic mouse islets, whereas glucose-induced oxygen consumption was unchanged. Although glucose-induced increases in ATP/ADP ratio were similarly lowered after ACOT7 overexpression in INS1(832/13) cells, changes in mitochondrial membrane potential were unaffected, consistent with an action of Acot7 to increase cellular ATP consumption. Because Acot7 mRNA levels are increased in human islets in type 2 diabetes, inhibition of the enzyme might provide a novel therapeutic strategy.


Asunto(s)
Regulación hacia Abajo , Ácidos Grasos no Esterificados/metabolismo , Regulación Enzimológica de la Expresión Génica , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , Animales , Señalización del Calcio , Línea Celular Tumoral , Células Clonales , Femenino , Intolerancia a la Glucosa/enzimología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/patología , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de Órganos , Palmitoil-CoA Hidrolasa/genética , Ratas , Proteínas Recombinantes/metabolismo , Caracteres Sexuales , Técnicas de Cultivo de Tejidos , Regulación hacia Arriba
17.
Biochem J ; 466(2): 203-18, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25697093

RESUMEN

Insulin release from pancreatic ß-cells is required to maintain normal glucose homoeostasis in man and many other animals. Defective insulin secretion underlies all forms of diabetes mellitus, a disease currently reaching epidemic proportions worldwide. Although the destruction of ß-cells is responsible for Type 1 diabetes (T1D), both lowered ß-cell mass and loss of secretory function are implicated in Type 2 diabetes (T2D). Emerging results suggest that a functional deficiency, involving de-differentiation of the mature ß-cell towards a more progenitor-like state, may be an important driver for impaired secretion in T2D. Conversely, at least in rodents, reprogramming of islet non-ß to ß-cells appears to occur spontaneously in models of T1D, and may occur in man. In the present paper, we summarize the biochemical properties which define the 'identity' of the mature ß-cell as a glucose sensor par excellence. In particular, we discuss the importance of suppressing a group of 11 'disallowed' housekeeping genes, including Ldha and the monocarboxylate transporter Mct1 (Slc16a1), for normal nutrient sensing. We then survey the changes in the expression and/or activity of ß-cell-enriched transcription factors, including FOXO1, PDX1, NKX6.1, MAFA and RFX6, as well as non-coding RNAs, which may contribute to ß-cell de-differentiation and functional impairment in T2D. The relevance of these observations for the development of new approaches to treat T1D and T2D is considered.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Modelos Biológicos , Vías Secretoras , Animales , Glucemia/metabolismo , Desdiferenciación Celular , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/patología , Islotes Pancreáticos/citología , Islotes Pancreáticos/patología , Islotes Pancreáticos/fisiología , Islotes Pancreáticos/fisiopatología , Mitocondrias/enzimología , Mitocondrias/metabolismo
18.
FASEB J ; 28(11): 4972-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25070369

RESUMEN

Fully differentiated pancreatic ß cells are essential for normal glucose homeostasis in mammals. Dedifferentiation of these cells has been suggested to occur in type 2 diabetes, impairing insulin production. Since chronic fuel excess ("glucotoxicity") is implicated in this process, we sought here to identify the potential roles in ß-cell identity of the tumor suppressor liver kinase B1 (LKB1/STK11) and the downstream fuel-sensitive kinase, AMP-activated protein kinase (AMPK). Highly ß-cell-restricted deletion of each kinase in mice, using an Ins1-controlled Cre, was therefore followed by physiological, morphometric, and massive parallel sequencing analysis. Loss of LKB1 strikingly (2.0-12-fold, E<0.01) increased the expression of subsets of hepatic (Alb, Iyd, Elovl2) and neuronal (Nptx2, Dlgap2, Cartpt, Pdyn) genes, enhancing glutamate signaling. These changes were partially recapitulated by the loss of AMPK, which also up-regulated ß-cell "disallowed" genes (Slc16a1, Ldha, Mgst1, Pdgfra) 1.8- to 3.4-fold (E < 0.01). Correspondingly, targeted promoters were enriched for neuronal (Zfp206; P = 1.3 × 10(-33)) and hypoxia-regulated (HIF1; P = 2.5 × 10(-16)) transcription factors. In summary, LKB1 and AMPK, through only partly overlapping mechanisms, maintain ß-cell identity by suppressing alternate pathways leading to neuronal, hepatic, and other characteristics. Selective targeting of these enzymes may provide a new approach to maintaining ß-cell function in some forms of diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células Secretoras de Insulina/enzimología , Insulina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
19.
Front Genet ; 5: 193, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25071823

RESUMEN

Type 2 diabetes usually ensues from the inability of pancreatic beta cells to compensate for incipient insulin resistance. The loss of beta cell mass, function, and potentially beta cell identity contribute to this dysfunction to extents which are debated. In recent years, long non-coding RNAs (lncRNAs) have emerged as potentially providing a novel level of gene regulation implicating critical cellular processes such as pluripotency and differentiation. With over 1000 lncRNAs now identified in beta cells, there is growing evidence for their involvement in the above processes in these cells. While functional evidence on individual islet lncRNAs is still scarce, we discuss how lncRNAs could contribute to type 2 diabetes susceptibility, particularly at loci identified through genome-wide association studies as affecting disease risk.

20.
Diabetes ; 63(9): 3009-21, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24740569

RESUMEN

Single nucleotide polymorphisms (SNPs) within the ADCY5 gene, encoding adenylate cyclase 5, are associated with elevated fasting glucose and increased type 2 diabetes (T2D) risk. Despite this, the mechanisms underlying the effects of these polymorphic variants at the level of pancreatic ß-cells remain unclear. Here, we show firstly that ADCY5 mRNA expression in islets is lowered by the possession of risk alleles at rs11708067. Next, we demonstrate that ADCY5 is indispensable for coupling glucose, but not GLP-1, to insulin secretion in human islets. Assessed by in situ imaging of recombinant probes, ADCY5 silencing impaired glucose-induced cAMP increases and blocked glucose metabolism toward ATP at concentrations of the sugar >8 mmol/L. However, calcium transient generation and functional connectivity between individual human ß-cells were sharply inhibited at all glucose concentrations tested, implying additional, metabolism-independent roles for ADCY5. In contrast, calcium rises were unaffected in ADCY5-depleted islets exposed to GLP-1. Alterations in ß-cell ADCY5 expression and impaired glucose signaling thus provide a likely route through which ADCY5 gene polymorphisms influence fasting glucose levels and T2D risk, while exerting more minor effects on incretin action.


Asunto(s)
Adenilil Ciclasas/fisiología , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Calcio/metabolismo , Diabetes Mellitus Tipo 2/genética , Péptido 1 Similar al Glucagón/fisiología , Glucosa/farmacología , Humanos , Secreción de Insulina , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA