Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Vaccine ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38969540

RESUMEN

In the context of polio eradication efforts, accurate assessment of vaccination programme effectiveness is essential to public health planning and decision making. Such assessments are often based on zero-dose children, estimated using the number of children who did not receive the first dose of the Diphtheria-Tetanus-Pertussis containing vaccine as a proxy. Our study introduces a novel approach to directly estimate the number of children susceptible to poliovirus type 2 (PV2) and uses this approach to provide district-level estimates for South Africa of susceptible children born between 2017 and 2022. We used district-level data on annual doses of inactivated poliovirus vaccine (IPV) administered, live births, and population sizes, from 2017 through 2022. We imputed missing vaccination data, implemented flexible assumptions regarding dose distribution in the eligible population, and used estimated efficacy values for one, two, three, and four doses of IPV, to compute the number of susceptible and immune children by birth year. We validated our approach by comparing an intermediary output with zero-dose children (ZDC) estimated using data reported by WHO/UNICEF Estimates of National Immunization Coverage (WUENIC). Our results indicate high heterogeneity in susceptibility to PV2 across South Africa's 52 districts as of the end of 2022. In children under 5 years, PV2 susceptibility ranged from approximately 30 % in districts including Xhariep (31.9 %), Ekurhuleni (30.1 %), and Central Karoo (29.8 %), to less than 4 % in Sarah Baartman (1.9 %), Buffalo City (2.1 %), and eThekwini (3.2 %). Our susceptibility estimates were consistently higher than ZDC over the timeframe. We estimated that ZDC decreased nationally from 155,168 (152,737-158,523) in 2017 to 108,593 in 2021, and increased to 127,102 in 2022, a trend consistent with ZDC derived from data reported by WUENIC. While our approach provides a more comprehensive profile of PV2 susceptibility, our susceptibility and ZDC estimates generally agree in the ranking of districts according to risk.

2.
Epidemics ; 45: 100720, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944405

RESUMEN

BACKGROUND: Outbreak response modelling often involves collaboration among academics, and experts from governmental and non-governmental organizations. We conducted a systematic review of modelling studies on human vaccine-preventable disease (VPD) outbreaks to identify patterns in modelling practices between two collaboration types. We complemented this with a mini comparison of foot-and-mouth disease (FMD), a veterinary disease that is controllable by vaccination. METHODS: We searched three databases for modelling studies that assessed the impact of an outbreak response. We extracted data on author affiliation type (academic institution, governmental, and non-governmental organizations), location studied, and whether at least one author was affiliated to the studied location. We also extracted the outcomes and interventions studied, and model characteristics. Included studies were grouped into two collaboration types: purely academic (papers with only academic affiliations), and mixed (all other combinations) to help investigate differences in modelling patterns between collaboration types in the human disease literature and overall differences with FMD collaboration practices. RESULTS: Human VPDs formed 227 of 252 included studies. Purely academic collaborations dominated the human disease studies (56%). Notably, mixed collaborations increased in the last seven years (2013-2019). Most studies had an author affiliated to an institution in the country studied (75.2%) but this was more likely among the mixed collaborations. Contrasted to the human VPDs, mixed collaborations dominated the FMD literature (56%). Furthermore, FMD studies more often had an author with an affiliation to the country studied (92%) and used complex model design, including stochasticity, and model parametrization and validation. CONCLUSION: The increase in mixed collaboration studies over the past seven years could suggest an increase in the uptake of modelling for outbreak response decision-making. We encourage more mixed collaborations between academic and non-academic institutions and the involvement of locally affiliated authors to help ensure that the studies suit local contexts.


Asunto(s)
COVID-19 , Fiebre Aftosa , Enfermedades Prevenibles por Vacunación , Animales , Humanos , COVID-19/epidemiología , Enfermedades Prevenibles por Vacunación/epidemiología , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control
3.
PLoS One ; 18(9): e0287026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37738280

RESUMEN

OBJECTIVES: The aim of this study was to quantify transmission trends in South Africa during the first four waves of the COVID-19 pandemic using estimates of the time-varying reproduction number (R) and to compare the robustness of R estimates based on three different data sources, and using data from public and private sector service providers. METHODS: R was estimated from March 2020 through April 2022, nationally and by province, based on time series of rt-PCR-confirmed cases, hospitalisations, and hospital-associated deaths, using a method that models daily incidence as a weighted sum of past incidence, as implemented in the R package EpiEstim. R was also estimated separately using public and private sector data. RESULTS: Nationally, the maximum case-based R following the introduction of lockdown measures was 1.55 (CI: 1.43-1.66), 1.56 (CI: 1.47-1.64), 1.46 (CI: 1.38-1.53) and 3.33 (CI: 2.84-3.97) during the first (Wuhan-Hu), second (Beta), third (Delta), and fourth (Omicron) waves, respectively. Estimates based on the three data sources (cases, hospitalisations, deaths) were generally similar during the first three waves, but higher during the fourth wave for case-based estimates. Public and private sector R estimates were generally similar except during the initial lockdowns and in case-based estimates during the fourth wave. CONCLUSION: Agreement between R estimates using different data sources during the first three waves suggests that data from any of these sources could be used in the early stages of a future pandemic. The high R estimates for Omicron relative to earlier waves are interesting given a high level of exposure pre-Omicron. The agreement between public and private sector R estimates highlights that clients of the public and private sectors did not experience two separate epidemics, except perhaps to a limited extent during the strictest lockdowns in the first wave.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Sudáfrica/epidemiología , Control de Enfermedades Transmisibles , Incidencia , Pandemias , Sector Privado , Reproducción
4.
PLOS Glob Public Health ; 3(7): e0001063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37399174

RESUMEN

BACKGROUND: The South African COVID-19 Modelling Consortium (SACMC) was established in late March 2020 to support planning and budgeting for COVID-19 related healthcare in South Africa. We developed several tools in response to the needs of decision makers in the different stages of the epidemic, allowing the South African government to plan several months ahead. METHODS: Our tools included epidemic projection models, several cost and budget impact models, and online dashboards to help government and the public visualise our projections, track case development and forecast hospital admissions. Information on new variants, including Delta and Omicron, were incorporated in real time to allow the shifting of scarce resources when necessary. RESULTS: Given the rapidly changing nature of the outbreak globally and in South Africa, the model projections were updated regularly. The updates reflected 1) the changing policy priorities over the course of the epidemic; 2) the availability of new data from South African data systems; and 3) the evolving response to COVID-19 in South Africa, such as changes in lockdown levels and ensuing mobility and contact rates, testing and contact tracing strategies and hospitalisation criteria. Insights into population behaviour required updates by incorporating notions of behavioural heterogeneity and behavioural responses to observed changes in mortality. We incorporated these aspects into developing scenarios for the third wave and developed additional methodology that allowed us to forecast required inpatient capacity. Finally, real-time analyses of the most important characteristics of the Omicron variant first identified in South Africa in November 2021 allowed us to advise policymakers early in the fourth wave that a relatively lower admission rate was likely. CONCLUSION: The SACMC's models, developed rapidly in an emergency setting and regularly updated with local data, supported national and provincial government to plan several months ahead, expand hospital capacity when needed, allocate budgets and procure additional resources where possible. Across four waves of COVID-19 cases, the SACMC continued to serve the planning needs of the government, tracking waves and supporting the national vaccine rollout.

5.
Sci Total Environ ; 903: 165817, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37506905

RESUMEN

The uptake of wastewater-based epidemiology (WBE) for SARS-CoV-2 as a complementary tool for monitoring population-level epidemiological features of the COVID-19 pandemic in low-and-middle-income countries (LMICs) is low. We report on the findings from the South African SARS-CoV-2 WBE surveillance network and make recommendations regarding the implementation of WBE in LMICs. Eight laboratories quantified influent wastewater collected from 87 wastewater treatment plants in all nine South African provinces from 01 June 2021 to 31 May 2022 inclusive, during the 3rd and 4th waves of COVID-19. Correlation and regression analyses between wastewater levels of SARS-CoV-2 and district laboratory-confirmed caseloads were conducted. The sensitivity and specificity of novel 'rules' based on WBE data to predict an epidemic wave were determined. Amongst 2158 wastewater samples, 543/648 (85 %) samples taken during a wave tested positive for SARS-CoV-2 compared with 842 positive tests from 1512 (55 %) samples taken during the interwave period. Overall, the regression-co-efficient was 0,66 (95 % confidence interval = 0,6-0,72, R2 = 0.59), ranging from 0.14 to 0.87 by testing laboratory. Early warning of the 4th wave of SARS-CoV-2 in Gauteng Province in November-December 2021 was demonstrated. A 50 % increase in log copies of SARS-CoV-2 compared with a rolling mean over the previous five weeks was the most sensitive predictive rule (58 %) to predict a new wave. Our findings support investment in WBE for SARS-CoV-2 surveillance in LMICs as an early warning tool. Standardising test methodology is necessary due to varying correlation strengths across laboratories and redundancy across testing plants. A sentinel site model can be used for surveillance networks without affecting WBE finding for decision-making. Further research is needed to identify optimal test frequency and the need for normalisation to population size to identify predictive and interpretive rules to support early warning and public health action.

6.
PLOS Glob Public Health ; 3(5): e0001073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195977

RESUMEN

There are limited published data within sub-Saharan Africa describing hospital pathways of COVID-19 patients hospitalized. These data are crucial for the parameterisation of epidemiological and cost models, and for planning purposes for the region. We evaluated COVID-19 hospital admissions from the South African national hospital surveillance system (DATCOV) during the first three COVID-19 waves between May 2020 and August 2021. We describe probabilities and admission into intensive care units (ICU), mechanical ventilation, death, and lengths of stay (LOS) in non-ICU and ICU care in public and private sectors. A log-binomial model was used to quantify mortality risk, ICU treatment and mechanical ventilation between time periods, adjusting for age, sex, comorbidity, health sector and province. There were 342,700 COVID-19-related hospital admissions during the study period. Risk of ICU admission was 16% lower during wave periods (adjusted risk ratio (aRR) 0.84 [0.82-0.86]) compared to between-wave periods. Mechanical ventilation was more likely during a wave overall (aRR 1.18 [1.13-1.23]), but patterns between waves were inconsistent, while mortality risk in non-ICU and ICU were 39% (aRR 1.39 [1.35-1.43]) and 31% (aRR 1.31 [1.27-1.36]) higher during a wave, compared to between-wave periods, respectively. If patients had had the same probability of death during waves vs between-wave periods, we estimated approximately 24% [19%-30%] of deaths (19,600 [15,200-24,000]) would not have occurred over the study period. LOS differed by age (older patients stayed longer), ward type (ICU stays were longer than non-ICU) and death/recovery outcome (time to death was shorter in non-ICU); however, LOS remained similar between time periods. Healthcare capacity constraints as inferred by wave period have a large impact on in-hospital mortality. It is crucial for modelling health systems strain and budgets to consider how input parameters related to hospitalisation change during and between waves, especially in settings with severely constrained resources.

7.
PLOS Glob Public Health ; 3(4): e0001070, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093784

RESUMEN

In March 2020 the South African COVID-19 Modelling Consortium was formed to support government planning for COVID-19 cases and related healthcare. Models were developed jointly by local disease modelling groups to estimate cases, resource needs and deaths due to COVID-19. The National COVID-19 Epi Model (NCEM) while initially developed as a deterministic compartmental model of SARS-Cov-2 transmission in the nine provinces of South Africa, was adapted several times over the course of the first wave of infection in response to emerging local data and changing needs of government. By the end of the first wave, the NCEM had developed into a stochastic, spatially-explicit compartmental transmission model to estimate the total and reported incidence of COVID-19 across the 52 districts of South Africa. The model adopted a generalised Susceptible-Exposed-Infectious-Removed structure that accounted for the clinical profile of SARS-COV-2 (asymptomatic, mild, severe and critical cases) and avenues of treatment access (outpatient, and hospitalisation in non-ICU and ICU wards). Between end-March and early September 2020, the model was updated 11 times with four key releases to generate new sets of projections and scenario analyses to be shared with planners in the national and provincial Departments of Health, the National Treasury and other partners. Updates to model structure included finer spatial granularity, limited access to treatment, and the inclusion of behavioural heterogeneity in relation to the adoption of Public Health and Social Measures. These updates were made in response to local data and knowledge and the changing needs of the planners. The NCEM attempted to incorporate a high level of local data to contextualise the model appropriately to address South Africa's population and health system characteristics that played a vital role in producing and updating estimates of resource needs, demonstrating the importance of harnessing and developing local modelling capacity.

8.
Ecohealth ; 20(1): 53-64, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37099204

RESUMEN

Bats, rodents and monkeys are reservoirs for emerging zoonotic infections. We sought to describe the frequency of human exposure to these animals and the seasonal and geographic variation of these exposures in Bangladesh. During 2013-2016, we conducted a cross-sectional survey in a nationally representative sample of 10,002 households from 1001 randomly selected communities. We interviewed household members about exposures to bats, rodents and monkeys, including a key human-bat interface-raw date palm sap consumption. Respondents reported observing rodents (90%), bats (52%) and monkeys (2%) in or around their households, although fewer reported direct contact. The presence of monkeys around the household was reported more often in Sylhet division (7%) compared to other divisions. Households in Khulna (17%) and Rajshahi (13%) were more likely to report drinking date palm sap than in other divisions (1.5-5.6%). Date palm sap was mostly consumed during winter with higher frequencies in January (16%) and February (12%) than in other months (0-5.6%). There was a decreasing trend in drinking sap over the three years. Overall, we observed substantial geographic and seasonal patterns in human exposure to animals that could be sources of zoonotic disease. These findings could facilitate targeting emerging zoonoses surveillance, research and prevention efforts to areas and seasons with the highest levels of exposure.


Asunto(s)
Quirópteros , Infecciones por Henipavirus , Virus Nipah , Animales , Humanos , Bangladesh/epidemiología , Estudios Transversales , Haplorrinos , Roedores , Infecciones por Henipavirus/epidemiología , Zoonosis/epidemiología
9.
Lancet ; 401(10379): 798-800, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36930672
11.
medRxiv ; 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35982666

RESUMEN

Objectives: We aimed to quantify transmission trends in South Africa during the first four waves of the COVID-19 pandemic using estimates of the time-varying reproduction number (R) and to compare the robustness of R estimates based on three different data sources and using data from public and private sector service providers. Methods: We estimated R from March 2020 through April 2022, nationally and by province, based on time series of rt-PCR-confirmed cases, hospitalizations, and hospital-associated deaths, using a method which models daily incidence as a weighted sum of past incidence. We also estimated R separately using public and private sector data. Results: Nationally, the maximum case-based R following the introduction of lockdown measures was 1.55 (CI: 1.43-1.66), 1.56 (CI: 1.47-1.64), 1.46 (CI: 1.38-1.53) and 3.33 (CI: 2.84-3.97) during the first (Wuhan-Hu), second (Beta), third (Delta), and fourth (Omicron) waves respectively. Estimates based on the three data sources (cases, hospitalisations, deaths) were generally similar during the first three waves but case-based estimates were higher during the fourth wave. Public and private sector R estimates were generally similar except during the initial lockdowns and in case-based estimates during the fourth wave. Discussion: Agreement between R estimates using different data sources during the first three waves suggests that data from any of these sources could be used in the early stages of a future pandemic. High R estimates for Omicron relative to earlier waves is interesting given a high level of exposure pre-Omicron. The agreement between public and private sector R estimates highlights the fact that clients of the public and private sectors did not experience two separate epidemics, except perhaps to a limited extent during the strictest lockdowns in the first wave.

12.
Science ; 376(6593): eabn4947, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35289632

RESUMEN

We provide two methods for monitoring reinfection trends in routine surveillance data to identify signatures of changes in reinfection risk and apply these approaches to data from South Africa's severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic to date. Although we found no evidence of increased reinfection risk associated with circulation of the Beta (B.1.351) or Delta (B.1.617.2) variants, we did find clear, population-level evidence to suggest immune evasion by the Omicron (B.1.1.529) variant in previously infected individuals in South Africa. Reinfections occurring between 1 November 2021 and 31 January 2022 were detected in individuals infected in all three previous waves, and there has been an increase in the risk of having a third infection since mid-November 2021.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Reinfección/epidemiología , SARS-CoV-2/genética , Sudáfrica/epidemiología
13.
Clin Infect Dis ; 75(1): e1000-e1010, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35084450

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused severe disruptions to healthcare in many areas of the world, but data remain scarce for sub-Saharan Africa. METHODS: We evaluated trends in hospital admissions and outpatient emergency department (ED) and general practitioner (GP) visits to South Africa's largest private healthcare system during 2016-2021. We fit time series models to historical data and, for March 2020-September 2021, quantified changes in encounters relative to baseline. RESULTS: The nationwide lockdown on 27 March 2020 led to sharp reductions in care-seeking behavior that persisted for 18 months after initial declines. For example, total admissions dropped 59.6% (95% confidence interval [CI], 52.4-66.8) during home confinement and were 33.2% (95% CI, 29-37.4) below baseline in September 2021. We identified 3 waves of all-cause respiratory encounters consistent with COVID-19 activity. Intestinal infections and non-COVID-19 respiratory illnesses experienced the most pronounced declines, with some diagnoses reduced 80%, even as nonpharmaceutical interventions (NPIs) relaxed. Non-respiratory hospitalizations, including injuries and acute illnesses, were 20%-60% below baseline throughout the pandemic and exhibited strong temporal associations with NPIs and mobility. ED attendances exhibited trends similar to those for hospitalizations, while GP visits were less impacted and have returned to pre-pandemic levels. CONCLUSIONS: We found substantially reduced use of health services during the pandemic for a range of conditions unrelated to COVID-19. Persistent declines in hospitalizations and ED visits indicate that high-risk patients are still delaying seeking care, which could lead to morbidity or mortality increases in the future.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Atención a la Salud , Servicio de Urgencia en Hospital , Humanos , Aceptación de la Atención de Salud , Estudios Retrospectivos , SARS-CoV-2 , Sudáfrica/epidemiología
14.
Blood Transfus ; 20(4): 299-309, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34967724

RESUMEN

BACKGROUND: South Africa aims to transition from a two-tiered healthcare system (public and private) to universal health coverage. Data on red blood cell (RBC) product usage reveal disparities between the sectors. Blood transfusion services further need to understand differing disease profiles and transfusion prescribing practices between the sectors to ensure blood security should the transition to a two-tiered health system come to fruition. MATERIALS AND METHODS: Operational data for public and private healthcare RBC requests between 1 January 2014 and 31 March 2019, obtained from the South African National Blood Service (SANBS), were retrospectively analysed. Sector-specific demographic and utilisation trends were compared for the dominant clinical disciplines. Pre-transfusion haemoglobin (Hb) patterns were also delineated for 2018. RESULTS: Between 2014 and 2019, 2,356,411 public and private sector RBC transfusion events resulted in the issue of 4,020,094 RBC units (1,553,159 transfusion events and 2,495,054 units within the public sector versus 803,282 transfusion events and 1,525,040 units in private). The dominant clinical disciplines within the public sector were Medical (32.9%), Gynaecology/Obstetrics (27.3%), General Surgery (13.6%), and Paediatrics (including Paediatric Surgery) (6.5%), compared to Intensive Care Units (33.2%), Medical (28.3%), General Surgery (10.4%), and Haematology/Oncology (8.3%) in the private sector. Median pre-transfusion Hb values for 2018 were lower in the public than in the private sector: 6.9 g/dL public sector versus 8 g/dL private sector. DISCUSSION: Clinical drivers of RBC usage within the public and private healthcare sectors in South Africa differ significantly. Disparate pre-transfusion Hb between the sectors are likely due to differing disease profiles and severity, as well as differences in practice in prescribing transfusions. Implementation of a nationally co-ordinated Patient Blood Management programme may help to address these disparities and help ensure a sustainable blood transfusion system.


Asunto(s)
Sector de Atención de Salud , Sector Público , Niño , Eritrocitos , Humanos , Estudios Retrospectivos , Sudáfrica/epidemiología
15.
Vaccine ; 39(40): 5845-5853, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34481696

RESUMEN

INTRODUCTION: Rapid outbreak response vaccination is a strategy for measles control and elimination. Measles vaccines must be stored and transported within a specified temperature range, but this can present significant challenges when targeting remote populations. Measles vaccine licensure for delivery outside cold chain (OCC) could provide more vaccine transport/storage space without ice packs, and a solution to shorten response times. However, due to vaccine safety and wastage considerations, the OCC strategy will require other operational changes, potentially including the use of 1-dose (monodose) instead of 10-dose vials, requiring larger transport/storage equipment currently achieved with 10-dose vials. These trade-offs require quantitative comparisons of vaccine delivery options to evaluate their relative benefits. METHODS: We developed a modelling framework combining elements of the vaccine supply chain - cold chain, vial, team, and transport equipment types - with a measles transmission dynamics model to compare vaccine delivery options. We compared 10 strategies resulting from combinations of the vaccine supply elements and grouped into three main classes: OCC, partial cold chain (PCC), and full cold chain (FCC). For each strategy, we explored a campaign with 20 teams sequentially targeting 5 locations with 100,000 individuals each. We characterised the time needed to freeze ice packs and complete the campaign (campaign duration), vaccination coverage, and cases averted, assuming a fixed pre-deployment delay before campaign commencement. We performed sensitivity analyses of the pre-deployment delay, population sizes, and two team allocation schemes. RESULTS: The OCC, PCC, and FCC strategies achieve campaign durations of 50, 51, and 52 days, respectively. Nine of the ten strategies can achieve a vaccination coverage of 80%, and OCC averts the most cases. DISCUSSION: The OCC strategy, therefore, presents improved operational and epidemiological outcomes relative to current practice and the other options considered.


Asunto(s)
Vacuna Antisarampión , Sarampión , Brotes de Enfermedades/prevención & control , Almacenaje de Medicamentos , Humanos , Sarampión/epidemiología , Sarampión/prevención & control , Refrigeración
16.
PLoS Biol ; 19(6): e3001307, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138840

RESUMEN

More than 1.6 million Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) tests were administered daily in the United States at the peak of the epidemic, with a significant focus on individual treatment. Here, we show that objective-driven, strategic sampling designs and analyses can maximize information gain at the population level, which is necessary to increase situational awareness and predict, prepare for, and respond to a pandemic, while also continuing to inform individual treatment. By focusing on specific objectives such as individual treatment or disease prediction and control (e.g., via the collection of population-level statistics to inform lockdown measures or vaccine rollout) and drawing from the literature on capture-recapture methods to deal with nonrandom sampling and testing errors, we illustrate how public health objectives can be achieved even with limited test availability when testing programs are designed a priori to meet those objectives.


Asunto(s)
Monitoreo Epidemiológico , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Prueba de COVID-19 , Humanos , Pandemias/prevención & control , Salud Pública , Asignación de Recursos , SARS-CoV-2/aislamiento & purificación , Vigilancia de Guardia , Estados Unidos/epidemiología
17.
PLoS One ; 16(5): e0250086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33956823

RESUMEN

BACKGROUND: Applied epidemiological models are used in predicting future trends of diseases, for the basic understanding of disease and health dynamics, and to improve the measurement of health indicators. Mapping the research outputs of epidemiological modelling studies concerned with transmission dynamics of infectious diseases and public health interventions in Africa will help to identify the areas with substantial levels of research activities, areas with gaps, and research output trends. METHODS: A scoping review of applied epidemiological models of infectious disease studies that involved first or last authors affiliated to African institutions was conducted. Eligible studies were those concerned with the transmission dynamics of infectious diseases and public health interventions. The review was consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension for scoping reviews. Four electronic databases were searched for peer-reviewed publications up to the end of April 2020. RESULTS: Of the 5927 publications identified, 181 met the inclusion criteria. The review identified 143 publications with first authors having an African institutional affiliation (AIA), while 81 had both first and last authors with an AIA. The publication authors were found to be predominantly affiliated with institutions based in South Africa and Kenya. Furthermore, human immunodeficiency virus, malaria, tuberculosis, and Ebola virus disease were found to be the most researched infectious diseases. There has been a gradual increase in research productivity across Africa especially in the last ten years, with several collaborative efforts spread both within and beyond Africa. CONCLUSIONS: Research productivity in applied epidemiological modelling studies of infectious diseases may have increased, but there remains an under-representation of African researchers as leading authors. The study findings indicate a need for the development of research capacity through supporting existing institutions in Africa and promoting research funding that will address local health priorities.


Asunto(s)
Enfermedades Transmisibles/transmisión , Modelos Estadísticos , Salud Pública , África , Enfermedades Transmisibles/epidemiología , Humanos
18.
Open Forum Infect Dis ; 8(3): ofab040, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33732750

RESUMEN

BACKGROUND: Dexamethasone and remdesivir have the potential to reduce coronavirus disease 2019 (COVID)-related mortality or recovery time, but their cost-effectiveness in countries with limited intensive care resources is unknown. METHODS: We projected intensive care unit (ICU) needs and capacity from August 2020 to January 2021 using the South African National COVID-19 Epi Model. We assessed the cost-effectiveness of (1) administration of dexamethasone to ventilated patients and remdesivir to nonventilated patients, (2) dexamethasone alone to both nonventilated and ventilated patients, (3) remdesivir to nonventilated patients only, and (4) dexamethasone to ventilated patients only, all relative to a scenario of standard care. We estimated costs from the health care system perspective in 2020 US dollars, deaths averted, and the incremental cost-effectiveness ratios of each scenario. RESULTS: Remdesivir for nonventilated patients and dexamethasone for ventilated patients was estimated to result in 408 (uncertainty range, 229-1891) deaths averted (assuming no efficacy [uncertainty range, 0%-70%] of remdesivir) compared with standard care and to save $15 million. This result was driven by the efficacy of dexamethasone and the reduction of ICU-time required for patients treated with remdesivir. The scenario of dexamethasone alone for nonventilated and ventilated patients requires an additional $159 000 and averts 689 [uncertainty range, 330-1118] deaths, resulting in $231 per death averted, relative to standard care. CONCLUSIONS: The use of remdesivir for nonventilated patients and dexamethasone for ventilated patients is likely to be cost-saving compared with standard care by reducing ICU days. Further efforts to improve recovery time with remdesivir and dexamethasone in ICUs could save lives and costs in South Africa.

19.
Clin Infect Dis ; 72(9): 1642-1644, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32628744

RESUMEN

Countries such as South Africa have limited intensive care unit (ICU) capacity to handle the expected number of patients with COVID-19 requiring ICU care. Remdesivir can prevent deaths in countries such as South Africa by decreasing the number of days people spend in ICU, therefore freeing up ICU bed capacity.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Humanos , Unidades de Cuidados Intensivos , SARS-CoV-2 , Sudáfrica/epidemiología
20.
BMJ Open ; 10(10): e036172, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020081

RESUMEN

INTRODUCTION: Outbreaks of vaccine-preventable diseases continue to threaten public health, despite the proven effectiveness of vaccines. Interventions such as vaccination, social distancing and palliative care are usually implemented, either individually or in combination, to control these outbreaks. Mathematical models are often used to assess the impact of these interventions and for supporting outbreak response decision making. The objectives of this systematic review, which covers all human vaccine-preventable diseases, are to determine the relative impact of vaccination compared with other outbreak interventions, and to ascertain the temporal trends in the use of modelling in outbreak response decision making. We will also identify gaps and opportunities for future research through a comparison with the foot-and-mouth disease outbreak response modelling literature, which has good examples of the use of modelling to inform outbreak response intervention decision making. METHODS AND ANALYSIS: We searched on PubMed, Scopus, Web of Science, Google Scholar and some preprint servers from the start of indexing to 15 January 2020. Inclusion: modelling studies, published in English, that use a mechanistic approach to evaluate the impact of an outbreak intervention. Exclusion: reviews, and studies that do not describe or use mechanistic models or do not describe an outbreak. We will extract data from the included studies such as their objectives, model types and composition, and conclusions on the impact of the intervention. We will ascertain the impact of models on outbreak response decision making through visualisation of time trends in the use of the models. We will also present our results in narrative style. ETHICS AND DISSEMINATION: This systematic review will not require any ethics approval since it only involves scientific articles. The review will be disseminated in a peer-reviewed journal and at various conferences fitting its scope. PROSPERO REGISTRATION NUMBER: CRD42020160803.


Asunto(s)
Fiebre Aftosa , Enfermedades Prevenibles por Vacunación , Animales , Brotes de Enfermedades/prevención & control , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Humanos , Ganado , Proyectos de Investigación , Revisiones Sistemáticas como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...