Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 625(7993): 181-188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123679

RESUMEN

Olfactory receptor (OR) choice provides an extreme example of allelic competition for transcriptional dominance, where every olfactory neuron stably transcribes one of approximately 2,000 or more OR alleles1,2. OR gene choice is mediated by a multichromosomal enhancer hub that activates transcription at a single OR3,4, followed by OR-translation-dependent feedback that stabilizes this choice5,6. Here, using single-cell genomics, we show formation of many competing hubs with variable enhancer composition, only one of which retains euchromatic features and transcriptional competence. Furthermore, we provide evidence that OR transcription recruits enhancers and reinforces enhancer hub activity locally, whereas OR RNA inhibits transcription of competing ORs over distance, promoting transition to transcriptional singularity. Whereas OR transcription is sufficient to break the symmetry between equipotent enhancer hubs, OR translation stabilizes transcription at the prevailing hub, indicating that there may be sequential non-coding and coding mechanisms that are implemented by OR alleles for transcriptional prevalence. We propose that coding OR mRNAs possess non-coding functions that influence nuclear architecture, enhance their own transcription and inhibit transcription from their competitors, with generalizable implications for probabilistic cell fate decisions.


Asunto(s)
Neuronas Receptoras Olfatorias , ARN , Receptores Odorantes , Alelos , Linaje de la Célula , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , ARN/genética , Transcripción Genética , Genómica , Análisis de la Célula Individual
2.
Elife ; 92020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33346731

RESUMEN

While the static structure of the nuclear pore complex (NPC) continues to be refined with cryo-EM and x-ray crystallography, in vivo conformational changes of the NPC remain under-explored. We developed sensors that report on the orientation of NPC components by rigidly conjugating mEGFP to different NPC proteins. Our studies show conformational changes to select domains of nucleoporins (Nups) within the inner ring (Nup54, Nup58, Nup62) when transport through the NPC is perturbed and no conformational changes to Nups elsewhere in the NPC. Our results suggest that select components of the NPC are flexible and undergo conformational changes upon engaging with cargo.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Poro Nuclear/química , Poro Nuclear/ultraestructura , Línea Celular , Humanos , Conformación Molecular , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/ultraestructura , Conformación Proteica
3.
J Gen Physiol ; 149(10): 951-966, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28887410

RESUMEN

The phenylalanine-glycine-repeat nucleoporins (FG-Nups), which occupy the lumen of the nuclear pore complex (NPC), are critical for transport between the nucleus and cytosol. Although NPCs differ in composition across species, they are largely conserved in organization and function. Transport through the pore is on the millisecond timescale. Here, to explore the dynamics of nucleoporins on this timescale, we use coarse-grained computational simulations. These simulations generate predictions that can be experimentally tested to distinguish between proposed mechanisms of transport. Our model reflects the conserved structure of the NPC, in which FG-Nup filaments extend into the lumen and anchor along the interior of the channel. The lengths of the filaments in our model are based on the known characteristics of yeast FG-Nups. The FG-repeat sites also bind to each other, and we vary this association over several orders of magnitude and run 100-ms simulations for each value. The autocorrelation functions of the orientation of the simulated FG-Nups are compared with in vivo anisotropy data. We observe that FG-Nups reptate back and forth through the NPC at timescales commensurate with experimental measurements of the speed of cargo transport through the NPC. Our results are consistent with models of transport where FG-Nup filaments are free to move across the central channel of the NPC, possibly informing how cargo might transverse the NPC.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas de Complejo Poro Nuclear/química , Poro Nuclear/metabolismo , Animales , Glicina/química , Glicina/metabolismo , Humanos , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo
4.
Traffic ; 18(3): 192-204, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28035714

RESUMEN

Apolipoprotein E (ApoE), a component of very-low-density and high-density lipoproteins, participates in many aspects of lipid transport in the bloodstream. Underscoring its important functions, ApoE isoforms have been associated with metabolic and circulatory disease. ApoE is also incorporated into hepatitis C virus (HCV) particles, and promotes their production and infectivity. Live cell imaging analysis of ApoE behavior during secretion from producing cells thus has the potential to reveal important details regarding lipoprotein and HCV particle biogenesis and secretion from cells. However, this approach requires expression of fluorescently tagged ApoE constructs that need to faithfully reproduce known ApoE behaviors. Herein, we evaluate the usefulness of using an ApoE-GFP fusion protein in studying hepatocyte-derived, ApoE-containing lipoproteins and HCV particles. We show that while ApoE-GFP alone is not sufficient to support infectious HCV production, it nonetheless colocalizes intracellularly and associates with secreted untagged lipoprotein components. Furthermore, its rate of secretion from hepatic cells is indistinguishable from that of untagged ApoE. ApoE-GFP thus represents a useful marker for ApoE-containing hepatic lipoproteins.


Asunto(s)
Apolipoproteínas E/metabolismo , Biomarcadores/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Liberación del Virus/fisiología , Línea Celular , Células HEK293 , Células HeLa , Hepacivirus/patogenicidad , Hepatocitos/virología , Humanos , Hígado/virología , Ensamble de Virus/fisiología
5.
Biomed Opt Express ; 7(3): 855-69, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27231594

RESUMEN

Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...