Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Opt Express ; 27(13): 17743-17762, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31252730

RESUMEN

In this paper, we present a novel interpretable machine learning technique that uses unique physical insights about noisy optical images and a few training samples to classify nanoscale defects in noisy optical images of a semiconductor wafer. Using this technique, we not only detected both parallel bridge defects and previously undetectable perpendicular bridge defects in a 9-nm node wafer using visible light microscopy [Proc. SPIE9424, 942416 (2015)], but we also accurately classified their shapes and estimated their sizes. Detection and classification of nanoscale defects in optical images is a challenging task. The quality of images is affected by diffraction and noise. Machine learning techniques can reduce noise and recognize patterns using a large training set. However, for detecting a rare "killer" defect, acquisition of a sufficient training set of high quality experimental images can be prohibitively expensive. In addition, there are technical challenges involved in using electromagnetic simulations and optimization of the machine learning algorithm. This paper proposes solutions to address each of the aforementioned challenges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA