Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 33(2): e2763, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36264047

RESUMEN

Mature forests provide important wildlife habitat and support critical ecosystem functions globally. Within the dry conifer forests of the western United States, past management and fire exclusion have contributed to forest conditions that are susceptible to increasingly severe wildfire and drought. We evaluated declines in conifer forest cover in the southern Sierra Nevada of California during a decade of record disturbance by using spatially comprehensive forest structure estimates, wildfire perimeter data, and the eDaRT forest disturbance tracking algorithm. Primarily due to the combination of wildfires, drought, and drought-associated beetle epidemics, 30% of the region's conifer forest extent transitioned to nonforest vegetation during 2011-2020. In total, 50% of mature forest habitat and 85% of high density mature forests either transitioned to lower density forest or nonforest vegetation types. California spotted owl protected activity centers (PAC) experienced greater canopy cover decline (49% of 2011 cover) than non-PAC areas (42% decline). Areas with high initial canopy cover and without tall trees were most vulnerable to canopy cover declines, likely explaining the disproportionate declines of mature forest habitat and within PACs. Drought and beetle attack caused greater cumulative declines than areas where drought and wildfire mortality overlapped, and both types of natural disturbance far outpaced declines attributable to mechanical activities. Drought mortality that disproportionately affects large conifers is particularly problematic to mature forest specialist species reliant on large trees. However, patches of degraded forests within wildfire perimeters were larger with greater core area than those outside burned areas, and remnant forest habitats were more fragmented within burned perimeters than those affected by drought and beetle mortality alone. The percentage of mature forest that survived and potentially benefited from lower severity wildfire increased over time as the total extent of mature forest declined. These areas provide some opportunity for improved resilience to future disturbances, but strategic management interventions are likely also necessary to mitigate worsening mega-disturbances. Remaining dry mature forest habitat in California may be susceptible to complete loss in the coming decades without a rapid transition from a conservation paradigm that attempts to maintain static conditions to one that manages for sustainable disturbance dynamics.


Asunto(s)
Incendios , Tracheophyta , Incendios Forestales , Ecosistema , Bosques , Árboles
2.
PLoS One ; 16(7): e0253604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34197517

RESUMEN

Climate change and anthropogenic modifications to the landscape can have both positive and negative effects on an animal. Linking landscape change to physiological stress and fitness of an animal is a fundamental tenet to be examined in applied ecology. Cortisol is a glucocorticoid hormone that can be used to indicate an animal's physiological stress response. In the Sierra Nevada Mountains of California, fishers (Pekania pennanti) are a threatened mesocarnivore that have been subjected to rapid landscape changes due to anthropogenic modifications and tree mortality related to a 4-year drought. We measured cortisol concentrations in the hair of 64 fishers (41 females, 23 males) captured and radio-collared in the Sierra National Forest, California. We addressed two main questions: (1) Is the physiological stress response of fishers influenced by anthropogenic factors, habitat type, canopy cover, and tree mortality due to drought in their home range? (2) Does the physiological stress response influence survival, reproduction, or body condition? We examined these factors within a fisher home range at 3 scales (30, 60, 95% isopleths). Using model selection, we found that tree mortality was the principle driver influencing stress levels among individual fishers with female and male fishers having increasing cortisol levels in home ranges with increasing tree mortality. Most importantly, we also found a link between physiological stress and demography where female fishers with low cortisol levels had the highest annual survival rate (0.94), whereas females with medium and high cortisol had lower annual survival rates, 0.78 and 0.81, respectively. We found no significant relationships between cortisol levels and body condition, male survival, or litter size. We concluded that tree mortality related to a 4-year drought has created a "landscape of stress" for this small, isolated fisher population.


Asunto(s)
Cambio Climático , Sequías , Especies en Peligro de Extinción/estadística & datos numéricos , Mustelidae/fisiología , Estrés Fisiológico , Animales , California , Seguimiento de Parámetros Ecológicos/estadística & datos numéricos , Femenino , Bosques , Cabello/química , Hidrocortisona/análisis , Masculino , Tasa de Supervivencia , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...