Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36678811

RESUMEN

Oxcarbazepine (OXC) is an anticonvulsant drug, indicated for the treatment of the neurological disorder, epilepsy. The objective of the present study was to evaluate the transdermal delivery of OXC from microemulsions using different penetration enhancers. Transcutol® P (TRC), oleic acid (OA), cineole (cin), Labrasol (LS), Tween 80 (T80) and N-Methyl-Pyrrolidone (NMP) were used as penetration enhancers as well as microemulsion components. Simple formulations of OXC in propylene glycol (PG) incorporating various penetration enhancers and combination of penetration enhancers were also evaluated for transdermal delivery. Drug delivery and penetration enhancement were studied using human cadaver skin on Franz diffusion cells. The results showed that all penetration enhancers improved the rate of permeation of OXC compared to the control. The flux of drug delivery from the various formulations was found to be, in decreasing order, cin > OA + TRC > NMP > TRC > OA. Overall, microemulsions prepared using cineole, Tween 80 and Transcutol® P (TRC) were shown to be provide the best penetration enhancement for OXC.

2.
Pharmaceutics ; 14(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36297605

RESUMEN

Superficial fungal diseases of the skin and nails are an increasingly common occurrence globally, requiring effective topical treatment to avoid systemic adverse effects. Polymeric nanoparticles have demonstrated sustained and effective drug delivery in a variety of topical formulations. The aim of this project was to develop polymeric antifungal nanospheres containing terbinafine hydrochloride (TBH) to be loaded into a hydrogel formulation for topical nail drug delivery. A quality by design (QbD) approach was used to achieve optimized particles with the desired quality target product profile (QTPP). Polyvinyl alcohol (PVA) at 2% w/v and a drug to polymer ratio of 1:4, together with a robust set of processes and material attributes, resulted in nanoparticles of 108.7 nm with a polydispersity index (PDI) of 0.63, 57.43% recovery, and other desirable characteristics such as zeta potential (ZP), particle shape, aggregation, etc. The nanospheres were incorporated into a carbomer-based gel, and the delivery of TBH through this formulation was evaluated by means of in vitro drug release testing (IVRT) and ex vivo nail permeation study. The gel containing the TBH nanospheres demonstrated a slower and controlled drug release profile compared with the control gel, in addition to a more efficient delivery into the nail. These antifungal nanospheres can be utilized for topical therapy of a multitude of superficial fungal infections.

3.
Pharmaceutics ; 14(10)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36297639

RESUMEN

The fungal disease of the nail, onychomycosis, which is also the most prevalent nail disturbance, demands effective topical treatment options considering the possible adverse effects of systemic antifungal therapy. The current work is focused on development of an adhesive and resistant, drug-delivering and permeation-enhancing polymeric film containing econazole nitrate (ECN) for topical antifungal treatment. The development of the lacquer formulation was guided by the Quality by Design approach to achieve the critical quality attributes needed to obtain the product of desired quality. Eudragit RSPO at 10% w/w was found to be the ideal adhesive polymer for the application and an optimal permeation-enhancing lacquer formulation was achieved by the optimization of other formulation excipients, such as plasticizer and the solvent system. Additionally, novel experimental enhancements introduced to the research included refined D50 drying time and drying rate tests for lacquer characterization as well as a multi-mechanism permeation-enhancing pre-treatment. Moreover, a practical implication was provided by a handwashing simulation designed to test the performance of the lacquer during actual use. In vitro drug release testing and ex vivo nail permeation testing demonstrated that the optimized nail lacquer performed better than control lacquer lacking the permeation enhancer by achieving a faster and sustained delivery of ECN. It can be concluded that this is a promising drug delivery system for topical antifungal treatment of onychomycotic nails, and the novel characterization techniques may be adapted for similar formulations in the future.

4.
Drug Deliv Transl Res ; 12(7): 1659-1683, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34993923

RESUMEN

The study focused to evaluate and investigate optimized (using QbD) and novel ketoconazole (KTZ)-loaded solid lipid nanoparticles (KTZ-SLNs; 2% w/v KTZ) for enhanced permeation across skin. KTZ-SLNs were evaluated for size, distribution, zeta potential (ZP), percent entrapment efficiency (%EE), drug release, morphology (HRTEM and FESEM), thermal behaviour (DSC), spectroscopic (FTIR), and solid-state/diffraction characterization (X-ray diffraction, XRD). Moreover, ex vivo permeation and drug deposition into rat skin were conducted using Franz diffusion cell. The same was confirmed using human dermatome skin and fluorescence, confocal Raman, and vibrational ATR-FTIR microscopic methods. An in vivo dermatokinetics study was performed in rats to assess the extent of KTZ permeation into the skin. Stability including accelerated and photostability studies were conducted at different temperatures (2-8, 30, and 40 °C) for 12 months. The spherical, optimized KTZ-SLN formulation (KOF1) showed particle size of 293 nm and high EE of 88.5%. Results of FTIR, DSC, and XRD confirmed formation of KTZ-SLNs and their amorphous nature due to presence of KTZ in a dissolved state in the lipid matrix. In vitro release was slow and sustained whereas ex vivo permeation parameters were significantly high in KTZ-SLNs as compared to free drug suspension (KTZ-SUS) and marketed product (Nizral®; 2% KTZ w/v). Drug retention was 10- and five-fold higher than KTZ-SUS and marketed product, respectively. In vivo dermatokinetics parameters improved significantly with SLN formulation (410-900% enhanced). Confocal Raman spectroscopy experiment showed that KTZ-SLNs could penetrate beyond the human stratum corneum into viable epidermis. Fluorescent microscopy also indicated improved penetration of KTZ-SLNs. KTZ-SLNs were photostable and showed long-term stability over 12 months under set conditions.


Asunto(s)
Cetoconazol , Nanopartículas , Animales , Portadores de Fármacos/química , Liposomas , Nanopartículas/química , Tamaño de la Partícula , Ratas , Suspensiones
5.
Pharmaceutics ; 13(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203714

RESUMEN

The vagina has been considered a potential drug administration route for centuries. Most of the currently marketed and investigated vaginal formulations are composed with the use of natural or synthetic polymers having different functions in the product. The vaginal route is usually investigated as an administration site for topically acting active ingredients; however, the anatomical and physiological features of the vagina make it suitable also for drug systemic absorption. In this review, the most important natural and synthetic polymers used in vaginal products are summarized and described, with special attention paid to the properties important in terms of vaginal application. Moreover, the current knowledge on the commonly applied and innovative dosage forms designed for vaginal administration was presented. The aim of this work was to highlight the most recent research directions and indicate challenges related to vaginal drug administrations. As revealed in the literature overview, intravaginal products still gain enormous scientific attention, and novel polymers and formulations are still explored. However, there are research areas that require more extensive studies in order to provide the safety of novel vaginal products.

6.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546426

RESUMEN

Psoriasis is a chronic autoimmune skin disease impacting the population globally. Pharmaceutical products developed to combat this condition commonly used in clinical settings are IV bolus or oral drug delivery routes. There are some major challenges for effectively developing new dosage forms for topical use: API physicochemical nature, the severity of the disease state, and low bioavailability present challenges for pharmaceutical product developers. For non-severe cases of psoriasis, topical drug delivery systems may be preferred or used in conjunction with oral or parenteral therapy to address local symptoms. Elastic vesicular systems, termed "niosomes", are promising drug delivery vehicles developed to achieve improved drug delivery into biological membranes. This study aimed to effectively incorporate a corticosteroid into the niosomes for improving the drug bioavailability of desoximetasone, used to treat skin conditions via topical delivery. Niosomes characterization measurements were drug content, pH, spreadability, specific gravity, content uniformity, rheology, and physicochemical properties. Formulations used a topical gelling agent, Carbomer 980 to test for in vitro skin permeation testing (IVPT) and accelerated stability studies. The developed niosomal test gel provided approximately 93.03 ± 0.23% to 101.84 ± 0.11% drug content with yield stresses ranging from 16.12 to 225.54 Pa. The permeated amount of desoximetasone from the niosomal gel after 24 h was 9.75 ± 0.44 µg/cm2 compared to 24.22 ± 4.29 µg/cm2 released from the reference gel tested. Furthermore, a drug retention study compared the test gel to a reference gel, demonstrating that the skin retained 30.88 ng/mg of desoximetasone while the reference product retained 26.01 ng/mg. A controlled drug release profile was obtained with a niosomal formulation containing desoximetasone for use in a topical gel formulation showing promise for potential use to treat skin diseases like psoriasis.


Asunto(s)
Desoximetasona/administración & dosificación , Portadores de Fármacos/química , Geles/química , Nanoestructuras/química , Tensoactivos/química , Administración Cutánea , Administración Tópica , Fenómenos Químicos , Química Farmacéutica , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Permeabilidad , Piel/efectos de los fármacos , Piel/metabolismo , Absorción Cutánea , Viscosidad
7.
Pharmaceutics ; 13(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540856

RESUMEN

Nose-to-brain drug delivery has recently attracted enormous attention as an alternative to other delivery routes, including the most popular oral one. Due to the unique anatomical features of the nasal cavity, drugs administered intranasally can be delivered directly to the central nervous system. The most important advantage of this approach is the ability to avoid the blood-brain barrier surrounding the brain and blocking the entry of exogenous substances to the central nervous system. Moreover, selective brain targeting could possibly avoid peripheral side effects of pharmacotherapy. The challenges associated with nose-to-brain drug delivery are mostly due to the small volume of the nasal cavity and insufficient drug absorption from nasal mucosa. These issues could be minimized by using a properly designed drug carrier. Microemulsions as potential drug delivery systems offer good solubilizing properties and the ability to enhance drug permeation through biological membranes. The aim of this review is to summarize the current status of the research focused on microemulsion-based systems for nose-to-brain delivery with special attention to the most extensively investigated neurological and psychiatric conditions, such as neurodegenerative diseases, epilepsy, and schizophrenia.

8.
AAPS J ; 23(1): 25, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33439400

RESUMEN

Iontophoresis is a widely used drug delivery technique that has been used clinically to improve permeation through the skin for drugs and other actives in topical formulations. It is however not commonly used for the treatment of nail diseases despite its potential to improve transungual nail delivery. Instead, treatments for nail diseases are limited to relatively ineffective topical passive permeation techniques, which often result in relapses of nail diseases due to the thickness and hardness of the nail barrier resulting in lower permeation of the actives. Oral systemic antifungal agents that are also used are often associated with various undesirable side effects resulting in low patient compliance. This review article discusses what is currently known about the field of transungual iontophoresis, providing evidence of its efficacy and practicality in delivering drug to the entire surface of the nail for extended treatment periods. It also includes relevant details about the nail structure, the mechanisms of iontophoresis, and the associated in vitro and in vivo studies which have been used to investigate the optimal characteristics for a transungual iontophoretic drug delivery system. Iontophoresis is undoubtedly a promising option to treat nail diseases, and the use of this technique for clinical use will likely improve patient outcomes.Graphical abstract.


Asunto(s)
Antifúngicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Iontoforesis/métodos , Enfermedades de la Uña/tratamiento farmacológico , Uñas/metabolismo , Administración Tópica , Animales , Antifúngicos/farmacocinética , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Humanos , Enfermedades de la Uña/patología , Uñas/efectos de los fármacos , Uñas/patología , Permeabilidad , Resultado del Tratamiento
9.
Pharmaceutics ; 12(3)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182792

RESUMEN

Topical corticosteroids are used to treat a variety of skin conditions such as allergic reactions, eczema, and psoriasis. Niosomes are a novel surfactant-based delivery system that may be used to deliver desoximetasone via topical product application in order to mitigate common side effects associated with traditional oral delivery routes. The aim of this research was to identify the critical material attributes (CMAs) and critical process parameters (CPPs) that impact key characteristics of drug-loaded niosomes using a systematic quality by design (QbD) approach. An organic phase injection method was developed and used to manufacture the niosomes. The CMAs were identified to be drug amount, concentrations of surfactant and cholesterol, and types of lipids. The CPPs were phase volumes, temperature, mixing parameters, and addition rate based on previous research. The quality attributes measured were entrapment efficiency, particle size distribution, PDI, and zeta potential. These were used to determine the quality target product profile (QTPP) of niosomes. The experimental data indicate that the critical impacting variables for niosomes are: surfactant and cholesterol concentrations, mixing parameters, and organic-phase addition rate. Based on the experimental results of this study methanol:diethyl ether (75:25) as the organic system, drug:surfactant:cholesterol in 1:2:1 concentration, stearic acid as the charge-inducing material, 20 mL external phase and 10 mL internal phase volume, 65 °C external phase temperature, 60 min mixing time, 650 RPM mixing speed and 1 mL/ml addition rate is the ideal combination to achieve desirable desoximetasone niosomes with optimum entrapment efficiency and particle size for topical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...