Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542274

RESUMEN

In adult fish, neurogenesis occurs in many areas of the brain, including the cerebellum, with the ratio of newly formed cells relative to the total number of brain cells being several orders of magnitude greater than in mammals. Our study aimed to compare the expressions of aromatase B (AroB), glutamine synthetase (GS), and cystathionine-beta-synthase (CBS) in the cerebellum of intact juvenile chum salmon, Oncorhynchus keta. To identify the dynamics that determine the involvement of AroB, GS, and CBS in the cellular mechanisms of regeneration, we performed a comprehensive assessment of the expressions of these molecular markers during a long-term primary traumatic brain injury (TBI) and after a repeated acute TBI to the cerebellum of O. keta juveniles. As a result, in intact juveniles, weak or moderate expressions of AroB, GS, and CBS were detected in four cell types, including cells of the neuroepithelial type, migrating, and differentiated cells (graphic abstract, A). At 90 days post injury, local hypercellular areas were found in the molecular layer containing moderately labeled AroB+, GS+, and CBS+ cells of the neuroepithelial type and larger AroB+, GS+, and CBS+ cells (possibly analogous to the reactive glia of mammals); patterns of cells migration and neovascularization were also observed. A repeated TBI caused the number of AroB+, GS+, and CBS+ cells to further increase; an increased intensity of immunolabeling was recorded from all cell types (graphic abstract, C). Thus, the results of this study provide a better understanding of adult neurogenesis in teleost fishes, which is expected to clarify the issue of the reactivation of adult neurogenesis in mammalian species.


Asunto(s)
Oncorhynchus keta , Animales , Glutamato-Amoníaco Ligasa , Cistationina , Aromatasa , Cistationina betasintasa , Cerebelo , Mamíferos
2.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563338

RESUMEN

Corpus cerebelli in juvenile chum salmon is a multiprojective region of the brain connected via afferent and efferent projections with the higher regions of the brainstem and synencephalon, as well as with multiprojection regions of the medulla oblongata and spinal cord. During the postembryonic development of the cerebellum in chum salmon, Oncorhynchus keta, the lateral part of the juvenile cerebellum gives rise to the caudomedial part of the definitive cerebellum, which is consistent with the data reported for zebrafish and mouse cerebellum. Thus, the topographic organization of the cerebellum and its efferents are similar between fish (chum salmon and zebrafish) and mammals, including mice and humans. The distributions of recombinant adeno-associated viral vectors (rAAVs) after an injection of the base vector into the cerebellum have shown highly specific patterns of transgene expression in bipolar neurons in the latero-caudal lobe of the juvenile chum tectum opticum. The distribution of rAAVs in the dorsal thalamus, epithalamus, nucleus rotundus, and pretectal complex indicates the targeted distribution of the transgene via the thalamo-cerebellar projections. The detection of GFP expression in the cells of the epiphysis and posterior tubercle of juvenile chum salmon is associated with the transgene's distribution and with the cerebrospinal fluid flow, the brain ventricles and its outer surface. The direct delivery of the rAAV into the central nervous system by intracerebroventricular administration allows it to spread widely in the brain. Thus, the presence of special projection areas in the juvenile chum salmon cerebellum, as well as outside it, and the identification of the transgene's expression in them confirm the potential ability of rAAVs to distribute in both intracerebellar and afferent and efferent extracerebellar projections of the cerebellum.


Asunto(s)
Oncorhynchus keta , Animales , Encéfalo , Cerebelo , Dependovirus/genética , Hipocampo , Mamíferos , Ratones , Neuronas/metabolismo , Oncorhynchus keta/metabolismo , Pez Cebra
3.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163116

RESUMEN

In the brain of teleost fish, radial glial cells are the major type of astroglial cells. To answer the question as to how radial glia structures adapt to the continuous growth of the brain, which is characteristic of salmonids, it is necessary to study various types of cells (neuronal precursors, astroglial cells, and cells in a state of neuronal differentiation) in the major integrative centers of the salmon brain (telencephalon and tectum opticum), using rainbow trout, Oncorhynchus mykiss, as a model. A study of the distribution of several molecular markers in the telencephalon and tectum with the identification of neural stem/progenitor cells, neuroblasts, and radial glia was carried out on juvenile (three-year-old) O. mykiss. The presence of all of these cell types provides specific conditions for the adult neurogenesis processes in the trout telencephalon and tectum. The distribution of glutamine synthetase, a molecular marker of neural stem cells, in the trout telencephalon revealed a large population of radial glia (RG) corresponding to adult-type neural stem cells (NSCs). RG dominated the pallial region of the telencephalon, while, in the subpallial region, RG was found in the lateral and ventral zones. In the optic tectum, RG fibers were widespread and localized both in the marginal layer and in the periventricular gray layer. Doublecortin (DC) immunolabeling revealed a large population of neuroblasts formed in the postembryonic period, which is indicative of intense adult neurogenesis in the trout brain. The pallial and subpallial regions of the telencephalon contained numerous DC+ cells and their clusters. In the tectum, DC+ cells were found not only in the stratum griseum periventriculare (SGP) and longitudinal torus (TL) containing proliferating cells, but also in the layers containing differentiated neurons: the central gray layer, the periventricular gray and white layers, and the superficial white layer. A study of the localization patterns of vimentin and nestin in the trout telencephalon and tectum showed the presence of neuroepithelial neural stem cells (eNSCs) and ependymoglial cells in the periventricular matrix zones of the brain. The presence of vimentin and nestin in the functionally heterogeneous cell types of adult trout indicates new functional properties of these proteins and their heterogeneous involvement in intracellular motility and adult neurogenesis. Investigation into the later stages of neuronal development in various regions of the fish brain can substantially elucidate the major mechanisms of adult neurogenesis, but it can also contribute to understanding the patterns of formation of certain brain regions and the involvement of RG in the construction of the definite brain structure.


Asunto(s)
Biomarcadores/metabolismo , Células-Madre Neurales/citología , Neurogénesis , Neuronas/citología , Oncorhynchus mykiss/crecimiento & desarrollo , Colículos Superiores/citología , Telencéfalo/citología , Animales , Proliferación Celular , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Oncorhynchus mykiss/metabolismo , Colículos Superiores/metabolismo , Telencéfalo/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163257

RESUMEN

Fetalization associated with a delay in development and the preservation of the features of the embryonic structure of the brain dominates the ontogeny of salmonids. The aim of the present study was to comparatively analyze the distribution of the glial-type aNSC markers such as vimentin and glial fibrillar acidic protein (GFAP) and the migratory neuronal precursors such as doublecortin in the telencephalon subpallium of juvenile masu salmon, Oncorhynchus masou, in normal conditions and at 1 week after an injury to the dorsal pallium. Immunohistochemical labeling of vimentin, GFAP, and doublecortin in the pallium of intact juvenile masu salmon revealed single cells with similar morphologies corresponding to a persistent pool of neuronal and/or glial progenitors. The study of the posttraumatic process showed the presence of intensely GFAP-labeled cells of the neuroepithelial type that form reactive neurogenic zones in all areas of the subpallial zone of juvenile masu salmon. A comparative analysis of the distribution of radial glia in the dorsal, ventral, and lateral zones of the subpallium showed a maximum concentration of cells in the dorsal part of subpallium (VD) and a minimum concentration in the lateral part of subpallium VL. An essential feature of posttraumatic immunolabeling in the masu salmon subpallium is the GFAP distribution patterns that are granular intracellular in the apical periventricular zone (PVZ) and fibrillar extracellular in the subventricular (SVZ) and parenchymal zones (PZ). In contrast to those in intact animals, most of the GFAP+ granules and constitutive neurogenic niches in injured fish were localized in the basal part of the PVZ. With the traumatic injury to the subpallium, the number of Vim+ cells in the lateral and ventral regions significantly increased. At 1 week post-injury, the total immunolabeling of vimentin cells in the PVZ was replaced by the granular pattern of Vim immunodistribution spreading from the PVZ to the SVZ and deeper parenchymal layers of the brain in all areas of the subpallium. A significant increase in the number of DC+ cells was observed also in all areas of the subpallium. The number of cells increased both in the PVZ and in the SVZ, as well as in the deeper PZ. Thus, at 1 week after the injury to the dorsal pallium, the number of DC, Vim, and GFAP expressing cells of the neuroepithelial type in the subpallium of juvenile masu salmon increased, and additionally GFAP+ radial glia appeared in VD, which was absent from intact animals.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Proteínas de Dominio Doblecortina/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Oncorhynchus/metabolismo , Salmón/metabolismo , Vimentina/metabolismo , Animales , Células Ependimogliales/metabolismo , Filamentos Intermedios , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Telencéfalo/metabolismo
5.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073457

RESUMEN

To date, data on the presence of adenoviral receptors in fish are very limited. In the present work, we used mouse recombinant adeno-associated viral vectors (rAAV) with a calcium indicator of the latest generation GCaMP6m that are usually applied for the dorsal hippocampus of mice but were not previously used for gene delivery into fish brain. The aim of our work was to study the feasibility of transduction of rAAV in the mouse hippocampus into brain cells of juvenile chum salmon and subsequent determination of the phenotype of rAAV-labeled cells by confocal laser scanning microscopy (CLSM). Delivery of the gene in vivo was carried out by intracranial injection of a GCaMP6m-GFP-containing vector directly into the mesencephalic tegmentum region of juvenile (one-year-old) chum salmon, Oncorhynchus keta. AAV incorporation into brain cells of the juvenile chum salmon was assessed at 1 week after a single injection of the vector. AAV expression in various areas of the thalamus, pretectum, posterior-tuberal region, postcommissural region, medial and lateral regions of the tegmentum, and mesencephalic reticular formation of juvenile O. keta was evaluated using CLSM followed by immunohistochemical analysis of the localization of the neuron-specific calcium binding protein HuCD in combination with nuclear staining with DAPI. The results of the analysis showed partial colocalization of cells expressing GCaMP6m-GFP with red fluorescent HuCD protein. Thus, cells of the thalamus, posterior tuberal region, mesencephalic tegmentum, cells of the accessory visual system, mesencephalic reticular formation, hypothalamus, and postcommissural region of the mesencephalon of juvenile chum salmon expressing GCaMP6m-GFP were attributed to the neuron-specific line of chum salmon brain cells, which indicates the ability of hippocampal mammal rAAV to integrate into neurons of the central nervous system of fish with subsequent expression of viral proteins, which obviously indicates the neuronal expression of a mammalian adenoviral receptor homolog by juvenile chum salmon neurons.


Asunto(s)
Dependovirus , Vectores Genéticos , Neuronas , Oncorhynchus keta , Tegmento Mesencefálico , Transducción Genética , Animales , Ratones , Microscopía Confocal , Neuronas/citología , Neuronas/metabolismo , Oncorhynchus keta/genética , Oncorhynchus keta/metabolismo , Tegmento Mesencefálico/citología , Tegmento Mesencefálico/metabolismo
6.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525421

RESUMEN

The considerable post-traumatic brain recovery in fishes makes them a useful model for studying the mechanisms that provide reparative neurogenesis, which is poorly represented in mammals. After a mechanical injury to the telencephalon in adult fish, lost neurons are actively replaced due to the proliferative activity of neuroepithelial cells and radial glia in the neurogenic periventricular zone. However, it is not enough clear which signaling mechanisms are involved in the activation of adult neural stem cells (aNSC) after the injury (reactive proliferation) and in the production of new neurons (regenerative neurogenesis) from progenitor cells (NPC). In juvenile Pacific salmon, the predominant type of NSCs in the telencephalon are neuroepithelial cells corresponding to embryonic NSCs. Expression of glutamine synthetase (GS), a NSC molecular marker, was detected in the neuroepithelial cells of the pallium and subpallium of juvenile chum salmon, Oncorhynchus keta. At 3 days after a traumatic brain injury (TBI) in juvenile chum salmon, the GS expression was detected in the radial glia corresponding to aNSC in the pallium and subpallium. The maximum density of distribution of GS+ radial glia was found in the dorsal pallial region. Hydrogen sulfide (H2S) is a proneurogenic factor that reduces oxidative stress and excitotoxicity effects, along with the increased GS production in the brain cells of juvenile chum salmon. In the fish brain, H2S producing by cystathionine ß-synthase in neurogenic zones may be involved in maintaining the microenvironment that provides optimal conditions for the functioning of neurogenic niches during constitutive neurogenesis. After injury, H2S can determine cell survivability, providing a neuroprotective effect in the area of injury and reducing the process of glutamate excitotoxicity, acting as a signaling molecule involved in changing the neurogenic environment, which leads to the reactivation of neurogenic niches and cell regeneration programs. The results of studies on the control of the expression of regulatory Sonic Hedgehog genes (Shh) and the transcription factors Paired Box2 (Pax2) regulated by them are still insufficient. A comparative analysis of Pax2 expression in the telencephalon of intact chum salmon showed the presence of constitutive patterns of Pax2 expression in neurogenic areas and non-neurogenic parenchymal zones of the pallium and subpallium. After mechanical injury, the patterns of Pax2 expression changed, and the amount of Pax2+ decreased (p < 0.05) in lateral (Dl), medial (Dm) zones of the pallium, and the lateral zone (Vl) of the subpallium compared to the control. We believe that the decrease in the expression of Pax2 may be caused by the inhibitory effect of the Pax6 transcription factor, whose expression in the juvenile salmon brain increases upon injury.


Asunto(s)
Lesiones Encefálicas/genética , Regeneración Cerebral/genética , Cistationina betasintasa/genética , Proteínas de Peces/genética , Glutamato-Amoníaco Ligasa/genética , Factor de Transcripción PAX2/genética , Telencéfalo/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Diferenciación Celular , Proliferación Celular , Cistationina betasintasa/metabolismo , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Glutamato-Amoníaco Ligasa/metabolismo , Ácido Glutámico/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Sulfuro de Hidrógeno/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neurogénesis/genética , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oncorhynchus keta , Factor de Transcripción PAX2/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Telencéfalo/lesiones , Telencéfalo/patología
7.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348868

RESUMEN

Fish are a convenient model for the study of reparative and post-traumatic processes of central nervous system (CNS) recovery, because the formation of new cells in their CNS continues throughout life. After a traumatic injury to the cerebellum of juvenile masu salmon, Oncorhynchus masou, the cell composition of the neurogenic zones containing neural stem cells (NSCs)/neural progenitor cells (NPCs) in the acute period (two days post-injury) changes. The presence of neuroepithelial (NE) and radial glial (RG) neuronal precursors located in the dorsal, lateral, and basal zones of the cerebellar body was shown by the immunohistochemical (IHC) labeling of glutamine synthetase (GS). Progenitors of both types are sources of neurons in the cerebellum of juvenile O. masou during constitutive growth, thus, playing an important role in CNS homeostasis and neuronal plasticity during ontogenesis. Precursors with the RG phenotype were found in the same regions of the molecular layer as part of heterogeneous constitutive neurogenic niches. The presence of neuroepithelial and radial glia GS+ cells indicates a certain proportion of embryonic and adult progenitors and, obviously, different contributions of these cells to constitutive and reparative neurogenesis in the acute post-traumatic period. Expression of nestin and vimentin was revealed in neuroepithelial cerebellar progenitors of juvenile O. masou. Patterns of granular expression of these markers were found in neurogenic niches and adjacent areas, which probably indicates the neurotrophic and proneurogenic effects of vimentin and nestin in constitutive and post-traumatic neurogenesis and a high level of constructive metabolism. No expression of vimentin and nestin was detected in the cerebellar RG of juvenile O. masou. Thus, the molecular markers of NSCs/NPCs in the cerebellum of juvenile O. masou are as follows: vimentin, nestin, and glutamine synthetase label NE cells in intact animals and in the post-traumatic period, while GS expression is present in the RG of intact animals and decreases in the acute post-traumatic period. A study of distribution of cystathionine ß-synthase (CBS) in the cerebellum of intact young O. masou showed the expression of the marker mainly in type 1 cells, corresponding to NSCs/NCPs for other molecular markers. In the post-traumatic period, the number of CBS+ cells sharply increased, which indicates the involvement of H2S in the post-traumatic response. Induction of CBS in type 3 cells indicates the involvement of H2S in the metabolism of extracellular glutamate in the cerebellum, a decrease in the production of reactive oxygen species, and also arrest of the oxidative stress development, a weakening of the toxic effects of glutamate, and a reduction in excitotoxicity. The obtained results allow us to consider H2S as a biologically active substance, the numerous known effects of which can be supplemented by participation in the processes of constitutive neurogenesis and neuronal regeneration.


Asunto(s)
Contaminantes Atmosféricos/farmacología , Cerebelo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Células-Madre Neurales/citología , Neurogénesis , Oncorhynchus/crecimiento & desarrollo , Animales , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Oncorhynchus/metabolismo
8.
Brain Sci ; 10(4)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276413

RESUMEN

A study of the lateral pallium in zebrafish and the visual tectum of the medaka revealed a population of adult neuroepithelial (NE) cells supported from the early stage of development to various postembryonic stages of ontogenesis. These data emphasize the importance of non-radial glial stem cells in the neurogenesis of adult animals, in particular fish. However, the distribution, cell cycle features, and molecular markers of NE cells and glial progenitors in fish are still poorly understood at the postembryonic stages of ontogenesis. Fetalization predominates in the ontogenetic development of salmon fish, which is associated with a delay in development and preservation of the features of the embryonic structure of the brain during the first year of life. In the present work, we studied the features of proliferation and the migration of neuronal precursors in the pallial proliferative zone of juvenile Oncorhynchus masou. The aim of the study is a comparative analysis of the distribution of glial-type aNSCs markers, such as vimentin and glial fibrillar acid protein GFAP, as well as the proliferation marker BrdU and migratory neuronal precursor doublecortin, in the pallial zone of the intact telencephalon in juvenile O. masou normal and after mechanical injury. The immunohistochemical IHC labeling with antibodies to vimentin, GFAP and doublecortin in the pallium of intact fish revealed single, small, round and oval immunopositive cells, that correspond to a persistent pool of neuronal and/or glial progenitors. After the injury, heterogeneous cell clusters, radial glia processes, single and small intensely labeled GFAP+ cells in the parenchyma of Dd and lateral part of pallium (Dl) appeared, corresponding to reactive neurogenic niches containing glial aNSCs. A multifold increase in the pool of Vim+ neuronal precursor cells (NPCs) resulting from the injury was observed. Vim+ cells of the neuroepithelial type in Dd and Dm and cells of the glial type were identified in Dl after the injury. Doublecortine (Dc) immunolabeling after the injury revealed the radial migration of neuroblasts into Dm from the neurogenic zone of the pallium. The appearance of intensely labeled Dc+ cells in the brain parenchyma might indicate the activation of resident aNSCs as a consequence of the traumatic process.

9.
Neural Regen Res ; 15(10): 1867-1886, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32246635

RESUMEN

Hydrogen sulfide (H2S) is considered as a protective factor against cardiovascular disorders. However, there are few reports on the effects of H2S in the central nervous system during stress or injury. Previous studies on goldfish have shown that astrocytic response occurs in the damaged and contralateral optic nerves. Glial fibrillary acidic protein (GFAP) concentration in the optic nerves of rainbow trout has not been measured previously. This study further characterized the astrocytic response in the optic nerve and the brain of a rainbow trout (Oncorhynchus mykiss) after unilateral eye injury and estimated the amount of H2S-producing enzyme cystathionine ß-synthase (CBS) in the brain of the rainbow trout. Within 1 week after unilateral eye injury, a protein band corresponding to a molecular weight of 50 kDa was identified in the ipsi- and contralateral optic nerves of the rainbow trout. The concentration of GFAP in the injured optic nerve increased compared to the protein concentration on the contralateral side. The results of a quantitative analysis of GFAP+ cell distribution in the contralateral optic nerve showed the largest number of GFAP+ cells and fibers in the optic nerve head. In the damaged optic nerve, patterns of GFAP+ cell migration and large GFAP+ bipolar activated astrocytes were detected at 1 week after unilateral eye injury. The study of H2S-producing system after unilateral eye injury in the rainbow trout was conducted using enzyme-linked immunosorbent assay, western blot analysis, and immunohistochemistry of polyclonal antibodies against CBS in the integrative centers of the brain: telencephalon, optic tectum, and cerebellum. Enzyme-linked immunosorbent assay results showed a 1.7-fold increase in CBS expression in the rainbow trout brain at 1 week after unilateral eye injury compared with that in intact animals. In the ventricular and subventricular regions of the rainbow trout telencephalon, CBS+ radial glia and neuroepithelial cells were identified. After unilateral eye injury, the number of CBS+ neuroepithelial cells in the pallial and subpallial periventricular regions of the telencephalon increased. In the optic tectum, unilateral eye injury led to an increase in CBS expression in radial glial cells; simultaneously, the number of CBS+ neuroepithelial cells decreased in intact animals. In the cerebellum of the rainbow trout, neuroglial interrelationships were revealed, where H2S was released, apparently, from astrocyte-like cells. The organization of H2S-producing cell complexes suggests that, the amount of glutamate produced in the rainbow trout cerebellum and its reuptake was controlled by astrocyte-like cells, reducing its excitotoxicity. In the dorsal matrix zone and granular eminences of the rainbow trout cerebellum, CBS was expressed in neuroepithelial cells. After unilateral eye injury, the level of CBS activity increased in all parts of the cerebellum. An increase in the number of H2S-producing cells was a response to oxidative stress after unilateral eye injury, and the overproduction of H2S in the cerebellum occurred to neutralize reactive oxygen species, providing the cells of the rainbow trout cerebellum with a protective effect. A structural reorganization in the dorsal matrix zone, associated with the appearance of an additional CBS+ apical zone, and a decrease in the enzyme activity in the dorsal matrix zone, was revealed in the zones of constitutive neurogenesis. All experiments were approved by the Commission on Biomedical Ethics, A.V. Zhirmunsky National Scientific Center of Marine Biology (NSCMB), Far Eastern Branch, Russian Academy of Science (FEB RAS) (approval No. 1) on July 31, 2019.

10.
Brain Sci ; 10(2)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991815

RESUMEN

The proliferation of neural stem cells (NSCs)/neuronal precursor cells (NPCs) and the occurrence of postmitotic neuroblasts in the mesencephalic tegmentum of intact juvenile chum salmon, Oncorhynchus keta, and at 3 days after a tegmental injury, were studied by immunohistochemical labeling. BrdU+ constitutive progenitor cells located both in the periventricular matrix zone and in deeper subventricular and parenchymal layers of the brain are revealed in the tegmentum of juvenile chum salmon. As a result of traumatic damage to the tegmentum, the proliferation of resident progenitor cells of the neuroepithelial type increases. Nestin-positive and vimentin-positive NPCs and granules located in the periventricular and subventricular matrix zones, as well as in the parenchymal regions of the tegmentum, are revealed in the mesencephalic tegmentum of juvenile chum salmon, which indicates a high level of constructive metabolism and constitutive neurogenesis. The expression of vimentin and nestin in the extracellular space, as well as additionally in the NSCs and NPCs of the neuroepithelial phenotype, which do not express nestin in the control animals, is enhanced during the traumatic process. As a result of the proliferation of such cells in the post-traumatic period, local Nes+ and Vim+ NPCs clusters are formed and become involved in the reparative response. Along with the primary traumatic lesion, which coincides with the injury zone, additional Nes+ and Vim+ secondary lesions are observed to form in the adjacent subventricular and parenchymal zones of the tegmentum. In the lateral tegmentum, the number of doublecortin-positive cells is higher compared to that in the medial tegmentum, which determines the different intensities and rates of neuronal differentiation in the sensory and motor regions of the tegmentum, respectively. In periventricular regions remote from the injury, the expression of doublecortin in single cells and their groups significantly increases compared to that in the damage zone.

11.
Neural Regen Res ; 14(1): 156-171, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30531090

RESUMEN

In contrast to astrocytes in mammals, fish astrocytes promote axon regeneration after brain injury and actively participate in the regeneration process. Neurolin, a regeneration-associated, Zn8-labeled protein, is involved in the repair of damaged optic nerve in goldfish. At 1 week after unilateral eye injury, the expression of neurolin in the optic nerve and chiasm, and the expression of Pax6 that influences nervous system development in various brain regions in the rainbow trout (Oncorhynchus mykiss) were detected. Immunohistochemical staining revealed that the number of Zn8+ cells in the optic nerve head and intraorbital segment was obviously increased, and the increase in Zn8+ cells was also observed in the proximal and distal parts of injured optic nerve. This suggests that Zn8+ astrocytes participate in optic nerve regeneration. ELISA results revealed that Pax6 protein increased obviously at 1 week post-injury. Immunohistochemical staining revealed the appearance of Pax6+ neurogenic niches and a larger number of neural precursor cells, which are mainly from Pax6+ radial glia cells, in the nuclei of the diencephalon and optic tectum of rainbow trout (Oncorhynchus mykiss). Taken together, unilateral eye injury can cause optic nerve reaction, and the formation of neurogenic niches is likely a compensation phenomenon during the repair process of optic nerve injury in rainbow trout (Oncorhynchus mykiss).

12.
Neural Regen Res ; 11(4): 578-90, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27212918

RESUMEN

Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1-4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration.

13.
Neural Regen Res ; 8(1): 13-23, 2013 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25206367

RESUMEN

We investigated the distribution of gamma aminobutyric acid, tyrosine hydroxylase and nitric oxide-producing elements in a cherry salmon Oncorhynchus masou brain at various stages of postnatal ontogenesis by immunohistochemical staining and histochemical staining. The periventricular region cells exhibited the morphology of neurons and glia including radial glia-like cells and contained several neurochemical substances. Heterogeneous populations of tyrosine hydroxylase-, gamma aminobutyric acid-immunoreactive, as well as nicotinamide adenine dinucleotide phosphate diaphorase-positive cells were observed in proliferating cell nuclear antigen-immunoreactive proliferative zones in periventricular area of diencephalon, central grey layer of dorsomedial tegmentum, medulla and spinal cord. Immunolocalization of Pax6 in the cherry salmon brain revealed a neuromeric construction of the brain at various stages of postnatal ontogenesis, and this was confirmed by tyrosine hydroxylase and gamma aminobutyric acid labeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...