RESUMEN
A simple protocol is outlined herein for rapid access to enantiopure unnatural amino acids (UAAs) from trivial glutamate and aspartate precursors. The method relies on Ag/Ni-electrocatalytic decarboxylative coupling and can be rapidly conducted in parallel (24 reactions at a time) to ascertain coupling viability followed by scale-up for the generation of useful quantities of UAAs for exploratory studies.
Asunto(s)
Aminoácidos , Aminoácidos/químicaRESUMEN
A novel and flexible approach for the stereo-controlled synthesis of vicinal tertiary carbinols is reported. The developed strategy featured a highly diastereoselective singlet-oxygen (O2 1 ) [4+2] cycloaddition of rationally designed cyclohexadienones (derived from oxidative dearomatization of the corresponding carboxylic-acid appended phenol precursors), followed by programmed "O-O" and "C-C" bond cleavage. In doing so, a highly functionalized and versatile intermediate was identified and prepared in synthetically useful quantity as a plausible precursor to access a variety of designed and naturally occurring vicinal tertiary carbinol containing compounds. Most notably, the developed strategy was successfully applied in the stereo-controlled synthesis of advanced core structures of zaragozic acid, pactamycin and ryanodol.
RESUMEN
Taxol (a brand name for paclitaxel) is widely regarded as among the most famed natural isolates ever discovered, and has been the subject of innumerable studies in both basic and applied science. Its documented success as an anticancer agent, coupled with early concerns over supply, stimulated a furious worldwide effort from chemists to provide a solution for its preparation through total synthesis. Those pioneering studies proved the feasibility of retrosynthetically guided access to synthetic Taxol, albeit in minute quantities and with enormous effort. In practice, all medicinal chemistry efforts and eventual commercialization have relied upon natural (plant material) or biosynthetically derived (synthetic biology) supplies. Here we show how a complementary divergent synthetic approach that is holistically patterned off of biosynthetic machinery for terpene synthesis can be used to arrive at Taxol.