Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(23): 4239-4254.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065062

RESUMEN

A common mRNA modification is 5-methylcytosine (m5C), whose role in gene-transcript processing and cancer remains unclear. Here, we identify serine/arginine-rich splicing factor 2 (SRSF2) as a reader of m5C and impaired SRSF2 m5C binding as a potential contributor to leukemogenesis. Structurally, we identify residues involved in m5C recognition and the impact of the prevalent leukemia-associated mutation SRSF2P95H. We show that SRSF2 binding and m5C colocalize within transcripts. Furthermore, knocking down the m5C writer NSUN2 decreases mRNA m5C, reduces SRSF2 binding, and alters RNA splicing. We also show that the SRSF2P95H mutation impairs the ability of the protein to read m5C-marked mRNA, notably reducing its binding to key leukemia-related transcripts in leukemic cells. In leukemia patients, low NSUN2 expression leads to mRNA m5C hypomethylation and, combined with SRSF2P95H, predicts poor outcomes. Altogether, we highlight an unrecognized mechanistic link between epitranscriptomics and a key oncogenesis driver.


Asunto(s)
Leucemia , Síndromes Mielodisplásicos , Neoplasias , Metilación de ARN , Factores de Empalme Serina-Arginina , Humanos , Leucemia/genética , Síndromes Mielodisplásicos/genética , Neoplasias/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina/genética , Metilación de ARN/genética
2.
Nat Cancer ; 2(6): 611-628, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121941

RESUMEN

Post-transcriptional modifications of RNA constitute an emerging regulatory layer of gene expression. The demethylase fat mass- and obesity-associated protein (FTO), an eraser of N6-methyladenosine (m6A), has been shown to play a role in cancer, but its contribution to tumor progression and the underlying mechanisms remain unclear. Here, we report widespread FTO downregulation in epithelial cancers associated with increased invasion, metastasis and worse clinical outcome. Both in vitro and in vivo, FTO silencing promotes cancer growth, cell motility and invasion. In human-derived tumor xenografts (PDXs), FTO pharmacological inhibition favors tumorigenesis. Mechanistically, we demonstrate that FTO depletion elicits an epithelial-to-mesenchymal transition (EMT) program through increased m6A and altered 3'-end processing of key mRNAs along the Wnt signaling cascade. Accordingly, FTO knockdown acts via EMT to sensitize mouse xenografts to Wnt inhibition. We thus identify FTO as a key regulator, across epithelial cancers, of Wnt-triggered EMT and tumor progression and reveal a therapeutically exploitable vulnerability of FTO-low tumors.


Asunto(s)
Neoplasias Glandulares y Epiteliales , ARN , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Ratones
3.
Nat Commun ; 11(1): 4956, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009383

RESUMEN

Tet-enzyme-mediated 5-hydroxymethylation of cytosines in DNA plays a crucial role in mouse embryonic stem cells (ESCs). In RNA also, 5-hydroxymethylcytosine (5hmC) has recently been evidenced, but its physiological roles are still largely unknown. Here we show the contribution and function of this mark in mouse ESCs and differentiating embryoid bodies. Transcriptome-wide mapping in ESCs reveals hundreds of messenger RNAs marked by 5hmC at sites characterized by a defined unique consensus sequence and particular features. During differentiation a large number of transcripts, including many encoding key pluripotency-related factors (such as Eed and Jarid2), show decreased cytosine hydroxymethylation. Using Tet-knockout ESCs, we find Tet enzymes to be partly responsible for deposition of 5hmC in mRNA. A transcriptome-wide search further reveals mRNA targets to which Tet1 and Tet2 bind, at sites showing a topology similar to that of 5hmC sites. Tet-mediated RNA hydroxymethylation is found to reduce the stability of crucial pluripotency-promoting transcripts. We propose that RNA cytosine 5-hydroxymethylation by Tets is a mark of transcriptome flexibility, inextricably linked to the balance between pluripotency and lineage commitment.


Asunto(s)
5-Metilcitosina/análogos & derivados , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN/metabolismo , 5-Metilcitosina/metabolismo , Animales , Especificidad de Anticuerpos/inmunología , Secuencia de Bases , Dioxigenasas , Cuerpos Embrioides/metabolismo , Ratones , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Unión Proteica , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
4.
Cancer Res ; 79(3): 482-494, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538121

RESUMEN

Although numerous epigenetic aberrancies accumulate in melanoma, their contribution to initiation and progression remain unclear. The epigenetic mark 5-hydroxymethylcytosine (5hmC), generated through TET-mediated DNA modification, is now referred to as the sixth base of DNA and has recently been reported as a potential biomarker for multiple types of cancer. Loss of 5hmC is an epigenetic hallmark of melanoma, but whether a decrease in 5hmc levels contributes directly to pathogenesis or whether it merely results from disease progression-associated epigenetic remodeling remains to be established. Here, we show that NRAS-driven melanomagenesis in mice is accompanied by an overall decrease in 5hmC and specific 5hmC gains in selected gene bodies. Strikingly, genetic ablation of Tet2 in mice cooperated with oncogenic NRASQ61K to promote melanoma initiation while suppressing specific gains in 5hmC. We conclude that TET2 acts as a barrier to melanoma initiation and progression, partly by promoting 5hmC gains in specific gene bodies. SIGNIFICANCE: This work emphasizes the importance of epigenome plasticity in cancer development and highlights the involvement of druggable epigenetic factors in cancer.


Asunto(s)
5-Metilcitosina/análogos & derivados , Proteínas de Unión al ADN/genética , Melanoma Experimental/genética , Proteínas Proto-Oncogénicas/genética , Neoplasias Cutáneas/genética , 5-Metilcitosina/metabolismo , Animales , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Progresión de la Enfermedad , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ratas
5.
Oncotarget ; 9(45): 27605-27629, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-29963224

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers in humans and a leading cause of cancer-related deaths worldwide. As in the case of other cancers, CRC heterogeneity leads to a wide range of clinical outcomes and complicates therapy. Over the years, multiple factors have emerged as markers of CRC heterogeneity, improving tumor classification and selection of therapeutic strategies. Understanding the molecular mechanisms underlying this heterogeneity remains a major challenge. A considerable research effort is therefore devoted to identifying additional features of colorectal tumors, in order to better understand CRC etiology and to multiply therapeutic avenues. Recently, long noncoding RNAs (lncRNAs) have emerged as important players in physiological and pathological processes, including CRC. Here we looked for lncRNAs that might contribute to the various colorectal tumor phenotypes. We thus monitored the expression of 4898 lncRNA genes across 566 CRC samples and identified 282 lncRNAs reflecting CRC heterogeneity. We then inferred potential functions of these lncRNAs. Our results highlight lncRNAs that may participate in the major processes altered in distinct CRC cases, such as WNT/ß-catenin and TGF-ß signaling, immunity, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. For several candidates, we provide experimental evidence supporting our functional predictions that they may be involved in the cell cycle or the EMT. Overall, our work identifies lncRNAs associated with key CRC characteristics and provides insights into their respective functions. Our findings constitute a further step towards understanding the contribution of lncRNAs to CRC heterogeneity. They may open new therapeutic opportunities.

6.
Sci Adv ; 2(9): e1600220, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27617288

RESUMEN

Evidence is emerging that long noncoding RNAs (lncRNAs) may play a role in cancer development, but this role is not yet clear. We performed a genome-wide transcriptional survey to explore the lncRNA landscape across 995 breast tissue samples. We identified 215 lncRNAs whose genes are aberrantly expressed in breast tumors, as compared to normal samples. Unsupervised hierarchical clustering of breast tumors on the basis of their lncRNAs revealed four breast cancer subgroups that correlate tightly with PAM50-defined mRNA-based subtypes. Using multivariate analysis, we identified no less than 210 lncRNAs prognostic of clinical outcome. By analyzing the coexpression of lncRNA genes and protein-coding genes, we inferred potential functions of the 215 dysregulated lncRNAs. We then associated subtype-specific lncRNAs with key molecular processes involved in cancer. A correlation was observed, on the one hand, between luminal A-specific lncRNAs and the activation of phosphatidylinositol 3-kinase, fibroblast growth factor, and transforming growth factor-ß pathways and, on the other hand, between basal-like-specific lncRNAs and the activation of epidermal growth factor receptor (EGFR)-dependent pathways and of the epithelial-to-mesenchymal transition. Finally, we showed that a specific lncRNA, which we called CYTOR, plays a role in breast cancer. We confirmed its predicted functions, showing that it regulates genes involved in the EGFR/mammalian target of rapamycin pathway and is required for cell proliferation, cell migration, and cytoskeleton organization. Overall, our work provides the most comprehensive analyses for lncRNA in breast cancers. Our findings suggest a wide range of biological functions associated with lncRNAs in breast cancer and provide a foundation for functional investigations that could lead to new therapeutic approaches.


Asunto(s)
Neoplasias de la Mama/genética , Genoma Humano , Proteínas de Neoplasias/genética , ARN Largo no Codificante/genética , Adulto , Anciano , Neoplasias de la Mama/patología , Movimiento Celular/genética , Proliferación Celular/genética , Receptores ErbB/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , ARN Largo no Codificante/aislamiento & purificación
7.
Oncotarget ; 7(37): 58939-58952, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27449289

RESUMEN

DNA methylation and histone modifications are key epigenetic regulators of gene expression, and tight connections are known between the two. DNA methyltransferases are upregulated in several tumors and aberrant DNA methylation profiles are a cancer hallmark. On the other hand, histone demethylases are upregulated in cancer cells. Previous work on ES cells has shown that the lysine demethylase KDM1A binds to DNMT1, thereby affecting DNA methylation. In cancer cells, the occurrence of this interaction has not been explored. Here we demonstrate in several tumor cell lines an interaction between KDM1A and both DNMT1 and DNMT3B. Intriguingly and in contrast to what is observed in ES cells, KDM1A depletion in cancer cells was found not to trigger any reduction in the DNMT1 or DNMT3B protein level or any change in DNA methylation. In the S-phase, furthermore, KDM1A and DNMT1 were found, to co-localize within the heterochromatin. Using P-LISA, we revealed substantially increased binding of KDM1A to DNMT1 during the S-phase. Together, our findings propose a mechanistic link between KDM1A and DNA methyltransferases in cancer cells and suggest that the KDM1A/DNMT1 interaction may play a role during replication. Our work also strengthens the idea that DNMTs can exert functions unrelated to act on DNA methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Histona Demetilasas/metabolismo , Neoplasias/metabolismo , Puntos de Control de la Fase S del Ciclo Celular , Animales , Carcinogénesis , Metilación de ADN , Células HeLa , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Lisina , Ratones , Células 3T3 NIH , Unión Proteica , ADN Metiltransferasa 3B
8.
Science ; 351(6270): 282-5, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26816380

RESUMEN

Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.


Asunto(s)
Encéfalo/anomalías , Citosina/análogos & derivados , Drosophila melanogaster/crecimiento & desarrollo , ARN Mensajero/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Encéfalo/metabolismo , Línea Celular , Citosina/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metilación , ARN Mensajero/genética , Transcriptoma
9.
Mol Biosyst ; 12(2): 404-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26621457

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Alteration of miRNA levels is common in tumors and contributes to the pathogenesis of human malignancies. In the present study we examined the role played by miR-137 in breast tumorigenesis. We found miR-137 levels to be lower in breast cancer cells than in their non-tumorigenic counterparts and observed reduced proliferation and migration of breast cancer cells overexpressing miR-137. We further identified KDM5B, a histone demethylase known to be involved in breast cancer tumorigenesis, as a target of miR-137. As the involvement of histone demethylases in cancer is still poorly understood and as the role of miRNAs in controlling epigenetic mechanisms in cancer is emerging, we broadened our study to the whole KDM5 histone demethylase family to see if the genes coding for these epigenetic enzymes might be regulated by miRNAs in cancer cells. We discovered that KDM5C is overexpressed in breast cancer cells, providing evidence that miR-138 regulates its expression. We found miR-138 overexpression to affect breast cancer cell proliferation. Altogether, our findings suggest that miRNAs may regulate KDM5 histone demethylase levels in breast cancer and thereby control breast cancer cell proliferation and migration.


Asunto(s)
Neoplasias de la Mama/enzimología , Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , MicroARNs/fisiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Regiones no Traducidas 3' , Secuencia de Bases , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Represión Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas Nucleares/genética , Interferencia de ARN , Proteínas Represoras/genética
10.
Cell Rep ; 8(3): 743-53, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25066127

RESUMEN

DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.


Asunto(s)
Quinasa de la Caseína II/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Procesamiento Proteico-Postraduccional , Células 3T3 , Animales , Línea Celular Tumoral , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/química , ADN Metiltransferasa 3A , Regulación hacia Abajo , Heterocromatina/metabolismo , Humanos , Ratones , Fosforilación , Estructura Terciaria de Proteína , Elementos de Nucleótido Esparcido Corto
11.
Nucleic Acids Res ; 42(13): 8285-96, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24957603

RESUMEN

DNA methylation is a central epigenetic modification in mammals, with essential roles in development and disease. De novo DNA methyltransferases establish DNA methylation patterns in specific regions within the genome by mechanisms that remain poorly understood. Here we show that protein citrullination by peptidylarginine deiminase 4 (PADI4) affects the function of the DNA methyltransferase DNMT3A. We found that DNMT3A and PADI4 interact, from overexpressed as well as untransfected cells, and associate with each other's enzymatic activity. Both in vitro and in vivo, PADI4 was shown to citrullinate DNMT3A. We identified a sequence upstream of the PWWP domain of DNMT3A as its primary region citrullinated by PADI4. Increasing the PADI4 level caused the DNMT3A protein level to increase as well, provided that the PADI4 was catalytically active, and RNAi targeting PADI4 caused reduced DNMT3A levels. Accordingly, pulse-chase experiments revealed stabilization of the DNMT3A protein by catalytically active PADI4. Citrullination and increased expression of native DNMT3A by PADI4 were confirmed in PADI4-knockout MEFs. Finally, we showed that PADI4 overexpression increases DNA methyltransferase activity in a catalytic-dependent manner and use bisulfite pyrosequencing to demonstrate that PADI4 knockdown causes significant reduction of CpG methylation at the p21 promoter, a known target of DNMT3A and PADI4. Protein citrullination by PADI4 thus emerges as a novel mechanism for controlling a de novo DNA methyltransferase. Our results shed new light on how post-translational modifications might contribute to shaping the genomic CpG methylation landscape.


Asunto(s)
Citrulina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Hidrolasas/metabolismo , Animales , Línea Celular , ADN Metiltransferasa 3A , Estabilidad de Enzimas , Humanos , Ratones , Ratones Noqueados , Estructura Terciaria de Proteína , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica
12.
EMBO J ; 32(5): 645-55, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23353889

RESUMEN

TET proteins convert 5-methylcytosine to 5-hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. TET2/3-OGT co-localize on chromatin at active promoters enriched for H3K4me3 and reduction of either TET2/3 or OGT activity results in a direct decrease in H3K4me3 and concomitant decreased transcription. Further, we show that Host Cell Factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS complex, is a specific GlcNAcylation target of TET2/3-OGT, and modification of HCF1 is important for the integrity of SET1/COMPASS. Additionally, we find both TET proteins and OGT activity promote binding of the SET1/COMPASS H3K4 methyltransferase, SETD1A, to chromatin. Finally, studies in Tet2 knockout mouse bone marrow tissue extend and support the data as decreases are observed of global GlcNAcylation and also of H3K4me3, notably at several key regulators of haematopoiesis. Together, our results unveil a step-wise model, involving TET-OGT interactions, promotion of GlcNAcylation, and influence on H3K4me3 via SET1/COMPASS, highlighting a novel means by which TETs may induce transcriptional activation.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , 5-Metilcitosina/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Islas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , Epigénesis Genética , Glicosilación , Histonas/metabolismo , Factor C1 de la Célula Huésped/metabolismo , Humanos , Inmunoprecipitación , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética
13.
EMBO Mol Med ; 3(12): 726-41, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21910250

RESUMEN

Breast cancer is a molecularly, biologically and clinically heterogeneous group of disorders. Understanding this diversity is essential to improving diagnosis and optimizing treatment. Both genetic and acquired epigenetic abnormalities participate in cancer, but the involvement of the epigenome in breast cancer and its contribution to the complexity of the disease are still poorly understood. By means of DNA methylation profiling of 248 breast tissues, we have highlighted the existence of previously unrecognized breast cancer groups that go beyond the currently known 'expression subtypes'. Interestingly, we showed that DNA methylation profiling can reflect the cell type composition of the tumour microenvironment, and in particular a T lymphocyte infiltration of the tumours. Further, we highlighted a set of immune genes having high prognostic value in specific tumour categories. The immune component uncovered here by DNA methylation profiles provides a new perspective for the importance of the microenvironment in breast cancer, holding implications for better management of breast cancer patients.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/fisiopatología , Metilación de ADN , Epigénesis Genética , Linfocitos T/inmunología , Femenino , Regulación de la Expresión Génica , Humanos
14.
Mol Cell Biol ; 29(18): 4982-93, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19581286

RESUMEN

Histone methylation plays key roles in regulating chromatin structure and function. The recent identification of enzymes that antagonize or remove histone methylation offers new opportunities to appreciate histone methylation plasticity in the regulation of epigenetic pathways. Peptidylarginine deiminase 4 (PADI4; also known as PAD4) was the first enzyme shown to antagonize histone methylation. PADI4 functions as a histone deiminase converting a methylarginine residue to citrulline at specific sites on the tails of histones H3 and H4. This activity is linked to repression of the estrogen-regulated pS2 promoter. Very little is known as to how PADI4 silences gene expression. We show here that PADI4 associates with the histone deacetylase 1 (HDAC1). Kinetic chromatin immunoprecipitation assays revealed that PADI4 and HDAC1, and the corresponding activities, associate cyclically and coordinately with the pS2 promoter during repression phases. Knockdown of HDAC1 led to decreased H3 citrullination, concomitantly with increased histone arginine methylation. In cells with a reduced HDAC1 and a slightly decreased PADI4 level, these effects were more pronounced. Our data thus suggest that PADI4 and HDAC1 collaborate to generate a repressive chromatin environment on the pS2 promoter. These findings further substantiate the "transcriptional clock" concept, highlighting the dynamic connection between deimination and deacetylation of histones.


Asunto(s)
Histonas/metabolismo , Iminas/metabolismo , Acetilación/efectos de los fármacos , Línea Celular , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Estradiol/farmacología , Histona Desacetilasas/metabolismo , Humanos , Hidrolasas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica
15.
FEBS Lett ; 579(1): 66-70, 2005 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-15620692

RESUMEN

Erm, a member of the PEA3 group within the Ets family of transcription factors, is expressed in murine and human lymphocytes. Here, we show that in the human Molt4 lymphoblastic cell line, the erm gene expression is regulated by the conventional PKC (cPKC) pathway. To better characterize the molecular mechanism by which cPKC regulates Erm transcription in Molt4 cells, we tested proximal promoter deletions of the human gene, and identified a specific cPKC-regulated region between positions -420 and -115 upstream of the first exon.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/fisiología , Regiones Promotoras Genéticas/genética , Proteína Quinasa C/fisiología , Transducción de Señal/fisiología , Linfocitos T/metabolismo , Acetato de Tetradecanoilforbol/análogos & derivados , Factores de Transcripción/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Dactinomicina/farmacología , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteína Quinasa C/antagonistas & inhibidores , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Eliminación de Secuencia/genética , Acetato de Tetradecanoilforbol/farmacología , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología , Regulación hacia Arriba
16.
Nucleic Acids Res ; 30(17): 3831-8, 2002 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12202768

RESUMEN

The Dnmt3L protein belongs to the Dnmt3 family of DNA methyltransferases by virtue of its sequence homology in the plant homeodomain (PHD)-like motif. Dnmt3L is essential for the establishment of maternal genomic imprints and, given its lack of key methyltransferase motifs, is more likely to act as a regulator of methylation rather than as an enzyme that methylates DNA. Here, we show that Dnmt3L, like Dnmt3a and Dnmt3b, interacts both in vitro and in vivo with the histone deacetylase HDAC1. Consistent with the binding to a deacetylase, Dnmt3L purifies histone deacetylase activity from nuclear extracts. We find that Dnmt3L can repress transcription and that this repression is dependent on HDAC1 and is relieved by treatment with the HDAC inhibitor trichostatin A. Binding of Dnmt3L to HDAC1 as well as its repressive function require the PHD-like motif. Our results indicate that Dnmt3L plays a role in transcriptional regulation and that recruitment of the HDAC repressive machinery is a shared and conserved feature of the Dnmt3 family. The fact that, despite the absence of a methyltransferase domain, Dnmt3L retains the capacity to contact deacetylase further substantiates the notion that the Dnmts can repress transcription independently of their methylating activities.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/genética , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Células HeLa , Histona Desacetilasa 1 , Histona Desacetilasas/genética , Humanos , Pruebas de Precipitina , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética , Células Tumorales Cultivadas , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA