Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38539466

RESUMEN

The DEAD (Asp-Glu-Ala-Asp)-box helicase 3 X-linked (DDX3X) protein participates in many aspects of mRNA metabolism and stress granule (SG) formation. DDX3X has also been associated with signal transduction and cell cycle regulation that are important in maintaining cellular homeostasis. Malfunctions of DDX3X have been implicated in multiple cancers, including brain cancer, leukemia, prostate cancer, and head and neck cancer. Recently, literature has reported SG-associated cancer drug resistance, which correlates with a negative disease prognosis. Based on the connections between DDX3X, SG formation, and cancer pathology, targeting DDX3X may be a promising direction for cancer therapeutics development. In this review, we describe the biological functions of DDX3X in terms of mRNA metabolism, signal transduction, and cell cycle regulation. Furthermore, we summarize the contributions of DDX3X in SG formation and cellular stress adaptation. Finally, we discuss the relationships of DDX3X, SG, and cancer drug resistance, and discuss the current research progress of several DDX3X inhibitors for cancer treatment.

2.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496418

RESUMEN

DEAD-box RNA helicases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box helicases unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened. Using high-resolution optical tweezers and fluorescence, we reveal a highly dynamic and stochastic process of multiple Ded1p protomers assembling on and unwinding an RNA duplex. One Ded1p protomer binds to a duplex-adjacent ssRNA tail and promotes binding and subsequent unwinding of the duplex by additional Ded1p protomers in 4-6 bp steps. The data also reveal rapid duplex unwinding and rezipping linked with binding and dissociation of individual protomers and coordinated with the ATP hydrolysis cycle.

3.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38440332

RESUMEN

The KT3 antibody is a commercially available antibody that recognizes the P granule protein PGL-3 (Takeda et al., 2008). Using immunostaining and western blotting of purified peptide fragments, we show that KT3 recognizes both PGL-3 and its paralog PGL-1 , likely through a shared epitope in the intrinsically disordered region.

4.
J Hered ; 115(1): 19-31, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-37935944

RESUMEN

The application of molecular tools to population management can improve the long-term genetic viability of ex situ populations. In this study, we aimed to understand the implications of integrating empirical kinships into the genetic management of an ex situ population of the endangered waterfowl, Baer's pochard (Aythya baeri), in North America. Single nucleotide polymorphism data were generated for 141 Baer's pochard using double digest restriction site-associated DNA sequencing and empirical kinships were derived and integrated into the population management software PMx. Analyses suggested 37.7% of pairwise relationships previously assumed to be unrelated were first, second, or third-order relatives. We determined that most genetic summary statistics were impacted through the calculation of the population's mean kinship, which increased from MK¯=0.0772 to MK¯=0.2074 after empirical kinships were integrated into our analyses. Our results also revealed the importance of understanding how molecular kinships derived from a particular estimator are scaled, if the scale differs significantly from pedigree-based kinships. We describe the theory behind the genetic metrics impacted and provide general guidance on incorporating empirical kinships into ex situ population management as well as provide suggestions for sampling strategies to minimize the biases inherent in merging two types of kinship estimators.


Asunto(s)
Polimorfismo de Nucleótido Simple , Programas Informáticos , América del Norte , Análisis de Secuencia de ADN , Linaje
5.
Genes Dev ; 37(9-10): 354-376, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37137715

RESUMEN

RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."


Asunto(s)
Gránulos Citoplasmáticos , Ribonucleoproteínas , Ribonucleoproteínas/genética , Gránulos de Ribonucleoproteínas Citoplasmáticas , ARN/química
6.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36715566

RESUMEN

A hallmark of all germ cells is the presence of germ granules: assemblies of proteins and RNA that lack a delineating membrane and are proposed to form via condensation. Germ granules across organisms share several conserved components, including factors required for germ cell fate determination and maintenance, and are thought to be linked to germ cell development. The molecular functions of germ granules, however, remain incompletely understood. In this Development at a Glance article, we survey germ granules across organisms and developmental stages, and highlight emerging themes regarding granule regulation, dynamics and proposed functions.


Asunto(s)
Caenorhabditis elegans , Gránulos de Ribonucleoproteína de Células Germinales , Animales , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Gránulos Citoplasmáticos/metabolismo
7.
Zoo Biol ; 42(1): 5-16, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35560574

RESUMEN

Science-based management confers a variety of benefits to wildlife populations that are cooperatively managed by zoos and aquariums, including those managed through the Association of Zoos and Aquariums. Briefly, when management strategies are successful, they result in reproductively robust populations that better retain genetic diversity and limit inbreeding than unmanaged populations. Although the benefits of demographic and genetic management have been well documented throughout both the scientific and popular literature, it has also been established that the majority of managed populations in zoos and aquariums are not meeting the minimum criteria believed to convey long-term biological viability. For most of these populations, an inability to meet viability criteria is not an inherent failure of how cooperative management is implemented. Furthermore, in recent years, we have perceived that the need to meet specific viability goals sometimes has obscured the benefits that these populations receive from rigorous, science-based management. To better clarify the conversation surrounding population viability in zoos and aquariums, we seek to decouple viability measures and how they predict population persistence from the benefits conferred to populations through science-based management. A primary goal of population management is to facilitate the persistence of priority species for longer than would be expected if no such management were implemented. Although current viability measures and future projections of viability are important tools for assessing the likelihood of population persistence, they are not indicators of which populations may most benefit from science-based management. Here, we review the history and purpose of applying science-based management to zoo and aquarium populations, describe measures of population viability and caution against confusing those measures of viability with population management goals or long-term population sustainability, and clearly articulate the benefits conferred to zoo and aquarium populations by science-based management.


Asunto(s)
Animales de Zoológico , Conservación de los Recursos Naturales , Animales , Animales de Zoológico/genética , Crianza de Animales Domésticos , Animales Salvajes , Endogamia
8.
Mol Ecol Resour ; 22(7): 2546-2558, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35510790

RESUMEN

Researchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sampled individuals. Here, we compare six commonly used genome-based relatedness estimators (kinship genetic distance [KGD], Wang maximum likelihood [TrioML], Queller and Goodnight [Rxy ], Kinship INference for Genome-wide association studies [KING-robust), and pairwise relatedness [RAB ], allele-sharing coancestry [AS]) across five species bred in captivity-including three birds and two mammals-with varying degrees of reliable pedigree data, using reduced-representation and whole genome resequencing data. Genome-based relatedness estimates varied widely across estimators, sequencing methods, and species, yet the most consistent results for known first order relationships were found using Rxy , RAB , and AS. However, AS was found to be less consistently correlated with known pedigree relatedness than either Rxy or RAB . Our combined results indicate there is not a single genome-based estimator that is ideal across different species and data types. To determine the most appropriate genome-based relatedness estimator for each new data set, we recommend assessing the relative: (1) correlation of candidate estimators with known relationships in the pedigree and (2) precision of candidate estimators with known first-order relationships. These recommendations are broadly applicable to conservation breeding programmes, particularly where genome-based estimates of relatedness can complement and complete poorly pedigreed populations. Given a growing interest in the application of wild pedigrees, our results are also applicable to in situ wildlife management.


Asunto(s)
Cruzamiento , Estudio de Asociación del Genoma Completo , Alelos , Animales , Animales Salvajes , Humanos , Mamíferos , Modelos Genéticos , Linaje
9.
Science ; 373(6560): 1218-1224, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516789

RESUMEN

Biomolecular condensates are cellular compartments that can form by phase separation in the absence of limiting membranes. Studying the P granules of Caenorhabditis elegans, we find that condensate dynamics are regulated by protein clusters that adsorb to the condensate interface. Using in vitro reconstitution, live observations, and theory, we demonstrate that localized assembly of P granules is controlled by MEG-3, an intrinsically disordered protein that forms low dynamic assemblies on P granules. Following classic Pickering emulsion theory, MEG-3 clusters lower surface tension and slow down coarsening. During zygote polarization, MEG-3 recruits the DYRK family kinase MBK-2 to accelerate spatially regulated growth of the P granule emulsion. By tuning condensate-cytoplasm exchange, interfacial clusters regulate the structural integrity of biomolecular condensates, reminiscent of the role of lipid bilayers in membrane-bound organelles.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas Intrínsecamente Desordenadas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Oocitos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Cigoto/metabolismo
10.
Chem Commun (Camb) ; 57(60): 7445-7448, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34232232

RESUMEN

G-quadruplex DNA interacts with the N-terminal intrinsically disordered domain of the DEAD-box helicase Ded1p, diminishing RNA unwinding activity but enhancing liquid-liquid phase separation of Ded1p in vitro and in cells. The data highlight multifaceted effects of quadruplex DNA on an enzyme with intrinsically disordered domains.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ADN/metabolismo , G-Cuádruplex , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoplasma/química , Citoplasma/metabolismo , ARN Helicasas DEAD-box/química , ADN/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Transición de Fase , Dominios Proteicos , ARN/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química
11.
Elife ; 102021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34106046

RESUMEN

Germ granules are protein-RNA condensates that segregate with the embryonic germline. In Caenorhabditis elegans embryos, germ (P) granule assembly requires MEG-3, an intrinsically disordered protein that forms RNA-rich condensates on the surface of PGL condensates at the core of P granules. MEG-3 is related to the GCNA family and contains an N-terminal disordered region (IDR) and a predicted ordered C-terminus featuring an HMG-like motif (HMGL). We find that MEG-3 is a modular protein that uses its IDR to bind RNA and its C-terminus to drive condensation. The HMGL motif mediates binding to PGL-3 and is required for co-assembly of MEG-3 and PGL-3 condensates in vivo. Mutations in HMGL cause MEG-3 and PGL-3 to form separate condensates that no longer co-segregate to the germline or recruit RNA. Our findings highlight the importance of protein-based condensation mechanisms and condensate-condensate interactions in the assembly of RNA-rich germ granules.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , ARN de Helminto/metabolismo , Secuencias de Aminoácidos , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Gránulos Citoplasmáticos/química , Embrión no Mamífero , Proteínas Intrínsecamente Desordenadas/química , ARN de Helminto/química
12.
Methods Enzymol ; 646: 83-113, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33453934

RESUMEN

Biomolecular condensates (BCs) are intracellular condensates that form by phase separation of proteins and RNA from the nucleoplasm or cytoplasm. BCs often form complex assemblies where compositionally distinct condensates wet each other without mixing. In this chapter, we describe methods to reconstitute multi-condensate assemblies from purified components. We include protocols to express, purify, label, and analyze the dynamics of proteins and RNAs that drive multi-condensate assembly. Analysis of the condensation and wetting behaviors of condensates in cell-free reconstituted systems can be used to define the molecular interactions that regulate BCs in cells.


Asunto(s)
Proteínas , ARN , Citoplasma
13.
Nat Commun ; 11(1): 5574, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149109

RESUMEN

Liquid-liquid phase separation (LLPS) of proteins that leads to formation of membrane-less organelles is critical to many biochemical processes in the cell. However, dysregulated LLPS can also facilitate aberrant phase transitions and lead to protein aggregation and disease. Accordingly, there is great interest in identifying small molecules that modulate LLPS. Here, we demonstrate that 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and similar compounds are potent biphasic modulators of protein LLPS. Depending on context, bis-ANS can both induce LLPS de novo as well as prevent formation of homotypic liquid droplets. Our study also reveals the mechanisms by which bis-ANS and related compounds modulate LLPS and identify key chemical features of small molecules required for this activity. These findings may provide a foundation for the rational design of small molecule modulators of LLPS with therapeutic value.


Asunto(s)
Naftalenosulfonatos de Anilina/química , Naftalenosulfonatos de Anilina/farmacología , Gránulos Citoplasmáticos/efectos de los fármacos , Proteínas de Unión al ADN/química , Transición de Fase , Naftalenosulfonatos de Anilina/toxicidad , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Citosol/metabolismo , Células HCT116 , Heparina/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Poli A/química , Dominios Proteicos/genética
14.
RNA ; 26(5): 541-549, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32014999

RESUMEN

The PI3K/Akt/mTOR kinase pathway is extensively deregulated in human cancers. One critical node under regulation of this signaling axis is eukaryotic initiation factor (eIF) 4F, a complex involved in the control of translation initiation rates. eIF4F-dependent addictions arise during tumor initiation and maintenance due to increased eIF4F activity-generally in response to elevated PI3K/Akt/mTOR signaling flux. There is thus much interest in exploring eIF4F as a small molecule target for the development of new anticancer drugs. The DEAD-box RNA helicase, eIF4A, is an essential subunit of eIF4F, and several potent small molecules (rocaglates, hippuristanol, pateamine A) affecting its activity have been identified and shown to demonstrate anticancer activity in vitro and in vivo in preclinical models. Recently, a number of new small molecules have been reported as having the capacity to target and inhibit eIF4A. Here, we undertook a comparative analysis of their biological activity and specificity relative to the eIF4A inhibitor, hippuristanol.


Asunto(s)
Antineoplásicos/química , Factor 4A Eucariótico de Iniciación/química , Neoplasias/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/química , Esteroles/química , Antineoplásicos/farmacología , Benzofuranos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Compuestos Epoxi/química , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4F Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4F Eucariótico de Iniciación/química , Humanos , Macrólidos/química , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Esteroles/farmacología , Serina-Treonina Quinasas TOR/genética , Tiazoles/química
15.
Nat Struct Mol Biol ; 27(2): 221, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31896770

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Elife ; 92020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31975687

RESUMEN

RNA granules are protein/RNA condensates. How specific mRNAs are recruited to cytoplasmic RNA granules is not known. Here, we characterize the transcriptome and assembly of P granules, RNA granules in the C. elegans germ plasm. We find that P granules recruit mRNAs by condensation with the disordered protein MEG-3. MEG-3 traps mRNAs into non-dynamic condensates in vitro and binds to ~500 mRNAs in vivo in a sequence-independent manner that favors embryonic mRNAs with low ribosome coverage. Translational stress causes additional mRNAs to localize to P granules and translational activation correlates with P granule exit for two mRNAs coding for germ cell fate regulators. Localization to P granules is not required for translational repression but is required to enrich mRNAs in the germ lineage for robust germline development. Our observations reveal similarities between P granules and stress granules and identify intrinsically-disordered proteins as drivers of RNA condensation during P granule assembly.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , ARN Mensajero/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Células Germinativas , Inmunoprecipitación , Unión Proteica , Biosíntesis de Proteínas
17.
Zoo Biol ; 39(2): 121-128, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31833594

RESUMEN

Hybridization among closely related species is a concern in zoo and aquarium populations where unpedigreed animals are frequently exchanged with the private sector. In this study, we examine possible hybridization in a group of Nubian ibex (Capra nubiana) imported into the Association of Zoos and Aquariums' (AZA) Species Survival Program (SSP) from a private institution. These individuals appeared smaller in stature than adult SSP Nubian ibex and were excluded from breeding recommendations over the concern that they were hybrids. Twenty-six microsatellites were used to rule out recent hybridization with domestic goats, Siberian ibex (Capra sibirica), and Alpine ibex (Capra ibex). We argue that natural phenotypic variation across the large geographic range of Nubian ibex may account for the small stature of the imported ibex, as private institutions may have historically acquired individuals from locations that differed from the SSP founders. However, the imported Nubian ibex appeared genetically differentiated from the SSP Nubian ibex and may represent a source of genetic variation for the managed population.


Asunto(s)
Cabras/clasificación , Cabras/genética , Hibridación Genética , Animales , Animales de Zoológico/genética , Tamaño Corporal , Cruzamiento , Femenino , Masculino , Repeticiones de Microsatélite/genética , Fenotipo
18.
Nat Struct Mol Biol ; 26(3): 220-226, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30833787

RESUMEN

RNA granules are subcellular compartments that are proposed to form by liquid-liquid phase separation (LLPS), a thermodynamic process that partitions molecules between dilute liquid phases and condensed liquid phases. The mechanisms that localize liquid phases in cells, however, are not fully understood. P granules are RNA granules that form in the posterior of Caenorhabditis elegans embryos. Theoretical studies have suggested that spontaneous LLPS of the RNA-binding protein PGL-3 with RNA drives the assembly of P granules. We find that the PGL-3 phase is intrinsically labile and requires a second phase for stabilization in embryos. The second phase is formed by gel-like assemblies of the disordered protein MEG-3 that associate with liquid PGL-3 droplets in the embryo posterior. Co-assembly of gel phases and liquid phases confers local stability and long-range dynamics, both of which contribute to localized assembly of P granules. Our findings suggest that condensation of RNA granules can be regulated spatially by gel-like polymers that stimulate LLPS locally in the cytoplasm.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Citoplasma/metabolismo , Extracción Líquido-Líquido
20.
Zoo Biol ; 38(1): 106-118, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30465726

RESUMEN

The global zoo and aquarium community widely recognizes that its animal collections and cooperative breeding programs are facing a sustainability crisis. It has become commonly accepted that numerous priority species cannot be maintained unless new management strategies are adopted. While molecular data have the potential to greatly improve management across a range of scenarios, they have been generally underutilized by the zoo and aquarium community. This failure to effectively apply molecular data to collection management has been due, in part, to a paucity of resources within the community on which to base informed decisions about when the use of such data is appropriate and what steps are necessary to successfully integrate data into management. Here, we identify three broad areas of inquiry where molecular data can inform management: 1) taxonomic identification; 2) incomplete or unknown pedigrees; and 3) hereditary disease. Across these topics, we offer a discussion of the advantages, limitations, and considerations for applying molecular data to ex situ animal populations in a style accessible to zoo and aquarium professionals. Ultimately, we intend for this compiled information to serve as a resource for the community to help ensure that molecular projects directly and effectively benefit the long-term persistence of ex situ populations.


Asunto(s)
Animales de Zoológico/genética , Conservación de los Recursos Naturales/métodos , Crianza de Animales Domésticos , Animales , Cruzamiento , Especies en Peligro de Extinción , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...