Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Data Brief ; 50: 109526, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37691737

RESUMEN

The dataset consists of 101 hyperspectral images of four human placentas and six hyperspectral images of contrast dyes (i.e., indocyanine green and red and blue food colorant) that were captured in the range 515-900 nm, step = 5 nm. The hyperspectral images were manually annotated, delineating the key anatomical structures: arteries, veins, stroma, and the umbilical cord. Standard reference materials were used for flat-field correction. The dataset is instrumental for advancing machine-learning algorithms and automated classification of anatomical structures, particularly the classification of superficial and deep vessels and transparent tissue layers.

2.
World Neurosurg ; 175: e614-e635, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37030483

RESUMEN

BACKGROUND: Hyperspectral imaging (HSI) has the potential to enhance surgical tissue detection and diagnostics. Definite utilization of intraoperative HSI guidance demands validated machine learning and public datasets that currently do not exist. Moreover, current imaging conventions are dispersed, and evidence-based paradigms for neurosurgical HSI have not been declared. METHODS: We presented the rationale and a detailed clinical paradigm for establishing microneurosurgical HSI guidance. In addition, a systematic literature review was conducted to summarize the current indications and performance of neurosurgical HSI systems, with an emphasis on machine learning-based methods. RESULTS: The published data comprised a few case series or case reports aiming to classify tissues during glioma operations. For a multitissue classification problem, the highest overall accuracy of 80% was obtained using deep learning. Our HSI system was capable of intraoperative data acquisition and visualization with minimal disturbance to glioma surgery. CONCLUSIONS: In a limited number of publications, neurosurgical HSI has demonstrated unique capabilities in contrast to the established imaging techniques. Multidisciplinary work is required to establish communicable HSI standards and clinical impact. Our HSI paradigm endorses systematic intraoperative HSI data collection, which aims to facilitate the related standards, medical device regulations, and value-based medical imaging systems.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Imágenes Hiperespectrales , Diagnóstico por Imagen , Aprendizaje Automático , Glioma/diagnóstico por imagen , Glioma/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía
3.
Cancer Treat Res Commun ; 32: 100615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35905671

RESUMEN

BACKGROUND: 5-aminolevulinic acid (5-ALA) - precursor of protoporphyrin IX (PpIX) - is utilized in fluorescence guided surgery (FGS) of high-grade gliomas. PpIX is used to identify traces of glioma during resection. Visual inspection of the fluorescence seems inaccurate in comparison to optic techniques such as hyperspectral imaging (HSI). AIM: To characterize the limits of PpIX fluorescence detection of (i) visual evaluation and (ii) HSI analysis and to (iii) develop a classification system for visible and non-visible PpIX fluorescence. METHODS: Samples with increasing concentrations (C) of PpIX and non-fluorescent controls were evaluated using a surgical microscope under blue light illumination. Similar samples were imaged with a HSI system tuned to PpIX fluorescence peak wavelength (635 nm) and control (RGB) channels. Samples' intensities were defined, leading to 96 analysed pixels after batching. RESULTS: Three expert neurosurgeons assessed the PpIX samples (n = 16) and controls (n = 8) with unanimous decisions (ICC = 0.704), resulting in 63% recognition rate, 48% sensitivity, 92% specificity, 92% positive predictive value (PPV) and 47% negative predictive value (NPV). HSI image analysis, comparing mean relative values, resulted in 96%, 100%, 86%, 94%, 100%, respectively. Minimum PpIX concentration detection for experts was 0.6-1.8 µmol/l and HSI's 0.03-0.15 µmol/l. CONCLUSIONS: PpIX concentrations of low-grade gliomas, and those reported on glioblastoma infiltration zones, are below experts' detection threshold. HSI analysis exceeds the performance of expert's visual inspection nearly by 20-fold. Hybrid FGS-HSI systems should be investigated in parallel to long-term outcomes. Described methods are applicable as a standard for calibration, testing and development of subvisual FGS techniques.


Asunto(s)
Neoplasias Encefálicas , Glioma , Ácido Aminolevulínico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Glioma/diagnóstico por imagen , Glioma/cirugía , Humanos , Imágenes Hiperespectrales , Fármacos Fotosensibilizantes , Protoporfirinas
4.
Front Neurosci ; 14: 640, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32694976

RESUMEN

BACKGROUND: Distinct tissue types are differentiated based on the surgeon's knowledge and subjective visible information, typically assisted with white-light intraoperative imaging systems. Narrow-band imaging (NBI) assists in tissue identification and enables automated classifiers, but many anatomical details moderate computational predictions and cause bias. In particular, tissues' light-source-dependent optical characteristics, anatomical location, and potentially hazardous microstructural changes such as peeling have been overlooked in previous literature. METHODS: Narrow-band images of five (n = 5) facial nerves (FNs) and internal carotid arteries (ICAs) were captured from freshly frozen temporal bones. The FNs were split into intracranial and intratemporal samples, and ICAs' adventitia was peeled from the distal end. Three-dimensional (3D) spectral data were captured by a custom-built liquid crystal tunable filter (LCTF) spectral imaging (SI) system. We investigated the normal variance between the samples and utilized descriptive and machine learning analysis on the image stack hypercubes. RESULTS: Reflectance between intact and peeled arteries in lower-wavelength domains between 400 and 576 nm was significantly different (p < 0.05). Proximal FN could be differentiated from distal FN in a higher range, 490-720 nm (p < 0.001). ICA with intact tunica differed from proximal FN nearly thorough the VIS range, 412-592 nm (p < 0.001) and 664-720 nm (p < 0.05) as did its distal counterpart, 422-720 nm (p < 0.001). The availed U-Net algorithm classified 90.93% of the pixels correctly in comparison to tissue margins delineated by a specialist. CONCLUSION: Selective NBI represents a promising method for assisting tissue identification and computational segmentation of surgical microanatomy. Further multidisciplinary research is required for its clinical applications and intraoperative integration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...