Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 45(3): e2300539, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37985952

RESUMEN

Non-monotonous actuation, that is, different kinds of motion in response to a single stimulus, is observed in some natural materials but difficult to implement in synthetic systems. Herein, polymer hydrogel sheets made from polyacrylamide (PAAm) or poly(dimethylacrylamide) (PDMAA) with a cross-linking gradient along the sheet thickness are reported. These are obtained by thermally initiated free radical polymerization using a specially designed Teflon mold with a glass lid. The resulting PAAm hydrogels undergo non-monotonous actuation (rolling into a tube and re-opening) when exposed to aqueous media as a single external stimulus. Their actuation kinetics is tuned with anions that have specific ion effects in their interaction with the surrounding solvent and the polymer itself: structure-breaking chloride enhances the hydration of the polymer backbone, structure-making sulfate decreases it, and is thus slowing down the actuation kinetics of the PAAm hydrogels. The PDMAA gel rolls up instantaneously in aqueous NaCl and only re-opens after 24 h. PDMAA actuation in aqueous Na2 SO4 is only moderate as the gel did not swell in that solvent. Bilayer hydrogels made from PAAm and PDMAA (without gradient) show monotonic actuation, closing in NaCl solution and re-opening in Na2 SO4 .


Asunto(s)
Hidrogeles , Polímeros , Cloruro de Sodio , Cinética , Agua , Solventes
2.
Nat Commun ; 11(1): 963, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075979

RESUMEN

Natural organic structures form via a growth mode in which nutrients are absorbed, transported, and integrated. In contrast, synthetic architectures are constructed through fundamentally different methods, such as assembling, molding, cutting, and printing. Here, we report a photoinduced strategy for regulating the localized growth of microstructures from the surface of a swollen dynamic substrate, by coupling photolysis, photopolymerization, and transesterification together. Photolysis is used to generate dissociable ionic groups to enhance the swelling ability that drives nutrient solutions containing polymerizable components into the irradiated region, photopolymerization converts polymerizable components into polymers, and transesterification incorporates newly formed polymers into the original network structure. Such light-regulated growth is spatially controllable and dose-dependent and allows fine modulation of the size, composition, and mechanical properties of the grown structures. We also demonstrate the application of this process in the preparation of microstructures on a surface and the restoration of large-scale surface damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...