Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Microbiol Spectr ; 9(3): e0061021, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34817282

RESUMEN

Phenotypic drug susceptibility testing (DST) for tuberculosis (TB) requires weeks to yield results. Although molecular tests rapidly detect drug resistance-associated mutations (DRMs), they are not scalable to cover the full genome and the many DRMs that can predict resistance. Whole-genome sequencing (WGS) methods are scalable, but if conducted directly on sputum, typically require a target enrichment step, such as nucleic acid amplification. We developed a targeted isothermal amplification-nanopore sequencing workflow for rapid prediction of drug resistance of TB isolates. We used recombinase polymerase amplification (RPA) to perform targeted isothermal amplification (37°C for 90 min) of three regions within the Mycobacterium tuberculosis genome, followed by nanopore sequencing on the MinION. We tested 29 mycobacterial genomic DNA extracts from patients with drug-resistant (DR) TB and compared our results to those of WGS by Illumina and phenotypic DST to evaluate the accuracy of prediction of resistance to rifampin and isoniazid. Amplification by RPA showed fidelity equivalent to that of high-fidelity PCR (100% concordance). Nanopore sequencing generated DRM predictions identical to those of WGS, with considerably faster sequencing run times of minutes rather than days. The sensitivity and specificity of rifampin resistance prediction for our workflow were 96.3% (95% confidence interval [CI], 81.0 to 99.9%) and 100.0% (95% CI, 15.8 to 100.0%), respectively. For isoniazid resistance prediction, the sensitivity and specificity were 100.0% (95% CI, 86.3 to 100.0%) and 100.0% (95% CI, 39.8 to 100.0%), respectively. The workflow consumable costs per sample are less than £100. Our rapid and low-cost drug resistance genotyping workflow provides accurate prediction of rifampin and isoniazid resistance, making it appropriate for use in resource-limited settings. IMPORTANCE Current methods for diagnosing drug-resistant tuberculosis are time consuming, resulting in delays in patients receiving treatment and in transmission onwards. They also require a high level of laboratory infrastructure, which is often only available at centralized facilities, resulting in further delays to diagnosis and additional barriers to deployment in resource-limited settings. This article describes a new workflow that can diagnose drug-resistant TB in a shorter time, with less equipment, and for a lower price than current methods. The amount of TB DNA is first increased without the need for bulky and costly thermocycling equipment. The DNA is then read using a portable sequencer called a MinION, which indicates whether there are tell-tale changes in the DNA that indicate whether the TB strain is drug resistant. Our workflow could play an important role in the future in the fight against the public health challenge that is TB drug resistance.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Secuenciación de Nanoporos/métodos , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Genotipo , Humanos , Isoniazida/farmacología , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/aislamiento & purificación , Secuenciación de Nanoporos/economía , Reacción en Cadena de la Polimerasa , Rifampin/farmacología , Sensibilidad y Especificidad , Esputo/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Flujo de Trabajo
3.
Front Immunol ; 11: 1872, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983107

RESUMEN

Tuberculosis remains a leading cause of death globally despite curative treatment, partly due to the difficulty of identifying patients who will not respond to therapy. Simple host biomarkers that correlate with response to drug treatment would facilitate improvement in outcomes and the evaluation of novel therapies. In a prospective longitudinal cohort study, we evaluated neutrophil count and phenotype at baseline, as well as during TB treatment in 79 patients [50 (63%) HIV-positive] with microbiologically confirmed drug susceptible TB undergoing standard treatment. At time of diagnosis, blood neutrophils were highly expanded and surface expression of the neutrophil marker CD15 greatly reduced compared to controls. Both measures changed rapidly with the commencement of drug treatment and returned to levels seen in healthy control by treatment completion. Additionally, at the time of diagnosis, high neutrophil count, and low CD15 expression was associated with higher sputum bacterial load and more severe lung damage on chest x-ray, two clinically relevant markers of disease severity. Furthermore, CD15 expression level at diagnosis was associated with TB culture conversion after 2 months of therapy (OR: 0.14, 95% CI: 0.02, 0.89), a standard measure of early TB treatment success. Importantly, our data was not significantly impacted by HIV co-infection. These data suggest that blood neutrophil metrics could potentially be exploited to develop a simple and rapid test to help determine TB disease severity, monitor drug treatment response, and identify subjects at diagnosis who may respond poorly to treatment.


Asunto(s)
Biomarcadores/sangre , Antígeno Lewis X/inmunología , Neutrófilos/inmunología , Tuberculosis/sangre , Adolescente , Adulto , Antituberculosos/uso terapéutico , Niño , Coinfección , Femenino , Infecciones por VIH , Humanos , Recuento de Leucocitos , Antígeno Lewis X/análisis , Estudios Longitudinales , Masculino , Neutrófilos/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Adulto Joven
4.
Lancet Microbe ; 1(4): e165-e174, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32803174

RESUMEN

BACKGROUND: Bedaquiline and clofazimine are important drugs in the treatment of drug-resistant tuberculosis and are commonly used across southern Africa, although drug susceptibility testing is not routinely performed. In this study, we did a genotypic and phenotypic analysis of drug-resistant Mycobacterium tuberculosis isolates from cohort studies in hospitals in KwaZulu-Natal, South Africa, to identify resistance-associated variants (RAVs) and assess the extent of clofazimine and bedaquiline cross-resistance. We also used a comprehensive dataset of whole-genome sequences to investigate the phylogenetic and geographical distribution of bedaquiline and clofazimine RAVs in southern Africa. METHODS: In this study, we included M tuberculosis isolates reported from the PRAXIS study of patients with drug-resistant tuberculosis treated with bedaquiline (King Dinuzulu Hospital, Durban) and three other cohort studies of drug-resistant tuberculosis in other KwaZulu-Natal hospitals, and sequential isolates from six persistently culture-positive patients with extensively drug-resistant tuberculosis at the KwaZulu-Natal provincial referral laboratory. Samples were collected between 2013 and 2019. Microbiological cultures were done as part of all parent studies. We sequenced whole genomes of included isolates and measured bedaquiline and clofazimine minimum inhibitory concentrations (MICs) for isolates identified as carrying any Rv0678 variant or previously published atpE, pepQ, and Rv1979c RAVs, which were the subject of the phenotypic study. We combined all whole-genome sequences of M tuberculosis obtained in this study with publicly available sequence data from other tuberculosis studies in southern Africa (defined as the countries of the Southern African Development Community), including isolates with Rv0678 variants identified by screening public genomic databases. We used this extended dataset to reconstruct phylogenetic relationships across lineage 2 and 4 M tuberculosis isolates. FINDINGS: We sequenced the whole genome of 648 isolates from 385 patients with drug-resistant tuberculosis recruited into cohort studies in KwaZulu-Natal, and 28 isolates from six patients from the KwaZulu-Natal referral laboratory. We identified 30 isolates with Rv0678 RAVs from 16 (4%) of 391 patients. We did not identify any atpE, pepQ, or Rv1979c RAVs. MICs were measured for 21 isolates with Rv0678 RAVs. MICs were above the critical concentration for bedaquiline resistance in nine (43%) of 21 isolates, in the intermediate category in nine (43%) isolates, and within the wild-type range in three (14%) isolates. Clofazimine MICs in genetically wild-type isolates ranged from 0·12-0·5 µg/mL, and in isolates with RAVs from 0·25-4·0 µg/mL. Phylogenetic analysis of the extended dataset including M tuberculosis isolates from southern Africa resolved multiple emergences of Rv0678 variants in lineages 2 and 4, documented two likely nosocomial transmission events, and identified the spread of a possibly bedaquiline and clofazimine cross-resistant clone in eSwatini. We also identified four patients with pepQ frameshift mutations that may confer resistance. INTERPRETATION: Bedaquiline and clofazimine cross-resistance in southern Africa is emerging repeatedly, with evidence of onward transmission largely due to Rv0678 mutations in M tuberculosis. Roll-out of bedaquiline and clofazimine treatment in the setting of limited drug susceptibility testing could allow further spread of resistance. Designing strong regimens would help reduce the emergence of resistance. Drug susceptibility testing is required to identify where resistance does emerge. FUNDING: Wellcome Trust, National Institute of Allergy and Infectious Diseases and National Center for Advancing Translational Sciences of the National Institutes of Health.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Clofazimina/farmacología , Diarilquinolinas , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Filogenia , Sudáfrica/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Estados Unidos
5.
Artículo en Inglés | MEDLINE | ID: mdl-32540971

RESUMEN

In 2019, the WHO tuberculosis (TB) treatment guidelines were updated to recommend only limited use of streptomycin, in favor of newer agents or amikacin as the preferred aminoglycoside for drug-resistant Mycobacterium tuberculosis However, the emergence of resistance to newer drugs, such as bedaquiline, has prompted a reanalysis of antitubercular drugs in search of untapped potential. Using 211 clinical isolates of M. tuberculosis from South Africa, we performed phenotypic drug susceptibility testing (DST) to aminoglycosides by both critical concentration and MIC determination in parallel with whole-genome sequencing to identify known genotypic resistance elements. Isolates with low-level streptomycin resistance mediated by gidB were frequently misclassified with respect to streptomycin resistance when using the WHO-recommended critical concentration of 2 µg/ml. We identified 29 M. tuberculosis isolates from South Africa with low-level streptomycin resistance concomitant with high-level amikacin resistance, conferred by gidB and rrs 1400, respectively. Using a large global data set of M. tuberculosis genomes, we observed 95 examples of this corresponding resistance genotype (gidB-rrs 1400), including identification in 81/257 (31.5%) of extensively drug resistant (XDR) isolates. In a phylogenetic analysis, we observed repeated evolution of low-level streptomycin and high-level amikacin resistance in multiple countries. Our findings suggest that current critical concentration methods and the design of molecular diagnostics need to be revisited to provide more accurate assessments of streptomycin resistance for gidB-containing isolates. For patients harboring isolates of M. tuberculosis with high-level amikacin resistance conferred by rrs 1400, and for whom newer agents are not available, treatment with streptomycin may still prove useful, even in the face of low-level resistance conferred by gidB.


Asunto(s)
Mycobacterium tuberculosis , Preparaciones Farmacéuticas , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Filogenia , Sudáfrica , Estreptomicina/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
6.
EBioMedicine ; 55: 102747, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32361247

RESUMEN

BACKGROUND: Studying within-host genetic diversity of Mycobacterium tuberculosis (Mtb) in patients during treatment may identify adaptations to antibiotic and immune pressure. Understanding the significance of genetic heteroresistance, and more specifically heterozygous resistance-associated variants (RAVs), is clinically important given increasing use of rapid molecular tests and whole genome sequencing (WGS). METHODS: We analyse data from six studies in KwaZulu-Natal, South Africa. Most patients (>75%) had baseline rifampicin resistance. Sputum was collected for culture at baseline and at between two and nine intervals until month six. Positive cultures underwent WGS. Mixed infections and reinfections were excluded from analysis. FINDINGS: Baseline Mtb overall genetic diversity (at treatment initiation or major change to regimen) was associated with cavitary disease, not taking antiretroviral therapy if HIV infected, infection with lineage 2 strains and absence of second-line drug resistance on univariate analyses. Baseline genetic diversity was not associated with six-month outcome. Genetic diversity increased from baseline to weeks one and two before returning to previous levels. Baseline genetic heteroresistance was most common for bedaquiline (6/10 [60%] of isolates with RAVs) and fluoroquinolones (9/62 [13%]). Most patients with heterozygous RAVs on WGS with sequential isolates available demonstrated RAV persistence or fixation (17/20, 85%). New RAVs emerged in 9/286 (3%) patients during treatment. We could detect low-frequency RAVs preceding emergent resistance in only one case, although validation of deep sequencing to detect rare variants is required. INTERPRETATION: In this study of single-strain Mtb infections, baseline within-host bacterial genetic diversity did not predict outcome but may reveal adaptations to host and drug pressures. Predicting emergent resistance from low-frequency RAVs requires further work to separate transient from consequential mutations. FUNDING: Wellcome Trust, NIH/NIAID.


Asunto(s)
Antituberculosos/uso terapéutico , Diarilquinolinas/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Genes Bacterianos , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/tratamiento farmacológico , Adulto , Estudios de Cohortes , Femenino , Fluoroquinolonas/uso terapéutico , Regulación Bacteriana de la Expresión Génica , Variación Genética , Interacciones Huésped-Patógeno/genética , Humanos , Masculino , Redes y Vías Metabólicas/genética , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Rifampin/uso terapéutico , Sudáfrica , Esputo/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/patología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología
8.
Artículo en Inglés | MEDLINE | ID: mdl-31964788

RESUMEN

The distribution of N-acetyltransferase 2 gene (NAT2) polymorphisms varies considerably among different ethnic groups. Information on NAT2 single-nucleotide polymorphisms in the South African population is limited. We investigated NAT2 polymorphisms and their effect on isoniazid pharmacokinetics (PK) in Zulu black HIV-infected South Africans in Durban, South Africa. HIV-infected participants with culture-confirmed pulmonary tuberculosis (TB) were enrolled from two unrelated studies. Participants with culture-confirmed pulmonary TB were genotyped for the NAT2 polymorphisms 282C>T, 341T>C, 481C>T, 857G>A, 590G>A, and 803A>G using Life Technologies prevalidated TaqMan assays (Life Technologies, Paisley, UK). Participants underwent sampling for determination of plasma isoniazid and N-acetyl-isoniazid concentrations. Among the 120 patients, 63/120 (52.5%) were slow metabolizers (NAT2*5/*5), 43/120 (35.8%) had an intermediate metabolism genotype (NAT2*5/12), and 12/120 (11.7%) had a rapid metabolism genotype (NAT2*4/*11, NAT2*11/12, and NAT2*12/12). The NAT2 alleles evaluated in this study were *4, *5C, *5D, *5E, *5J, *5K, *5KA, *5T, *11A, *12A/12C, and *12M. NAT2*5 was the most frequent allele (70.4%), followed by NAT2*12 (27.9%). Fifty-eight of 60 participants in study 1 had PK results. The median area under the concentration-time curve from 0 to infinity (AUC0-∞) was 5.53 (interquartile range [IQR], 3.63 to 9.12 µg h/ml), and the maximum concentration (Cmax) was 1.47 µg/ml (IQR, 1.14 to 1.89 µg/ml). Thirty-four of 40 participants in study 2 had both PK results and NAT2 genotyping results. The median AUC0-∞ was 10.76 µg·h/ml (IQR, 8.24 to 28.96 µg·h/ml), and the Cmax was 3.14 µg/ml (IQR, 2.39 to 4.34 µg/ml). Individual polymorphisms were not equally distributed, with some being represented in small numbers. The genotype did not correlate with the phenotype, with those with a rapid acetylator genotype showing higher AUC0-∞ values than those with a slow acetylator genotype, but the difference was not significant (P = 0.43). There was a high prevalence of slow acetylator genotypes, followed by intermediate and then rapid acetylator genotypes. The poor concordance between genotype and phenotype suggests that other factors or genetic loci influence isoniazid metabolism, and these warrant further investigation in this population.


Asunto(s)
Antituberculosos/farmacocinética , Arilamina N-Acetiltransferasa/genética , Isoniazida/farmacocinética , Tuberculosis Pulmonar/tratamiento farmacológico , Infecciones Oportunistas Relacionadas con el SIDA/tratamiento farmacológico , Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Acetilación , Adolescente , Adulto , Antituberculosos/efectos adversos , Población Negra/genética , Femenino , Frecuencia de los Genes , Genotipo , Haplotipos , Humanos , Isoniazida/efectos adversos , Isoniazida/análogos & derivados , Masculino , Persona de Mediana Edad , Sudáfrica , Tuberculosis Pulmonar/virología , Adulto Joven
11.
Sci Rep ; 9(1): 10724, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341191

RESUMEN

In HIV hyperendemic sub-Saharan African communities, particularly in southern Africa, the likelihood of achieving the Sustainable Development Goal of ending the tuberculosis (TB) epidemic by 2030 is low, due to lack of cost-effective and practical interventions in population settings. We used one of Africa's largest population-based prospective cohorts from rural KwaZulu-Natal Province, South Africa, to measure the spatial variations in the prevalence of recently-diagnosed TB disease, and to quantify the impact of community coverage of antiretroviral therapy (ART) on recently-diagnosed TB disease. We collected data on TB disease episodes from a population-based sample of 41,812 adult individuals between 2009 and 2015. Spatial clusters ('hotspots') of recently-diagnosed TB were identified using a space-time scan statistic. Multilevel logistic regression models were fitted to investigate the relationship between community ART coverage and recently-diagnosed TB. Spatial clusters of recently-diagnosed TB were identified in a region characterized by a high prevalence of HIV and population movement. Every percentage increase in ART coverage was associated with a 2% decrease in the odds of recently-diagnosed TB (aOR = 0.98, 95% CI:0.97-0.99). We identified for the first time the clear occurrence of recently-diagnosed TB hotspots, and quantified potential benefit of increased community ART coverage in lowering tuberculosis, highlighting the need to prioritize the expansion of such effective population interventions targeting high-risk areas.


Asunto(s)
Antirretrovirales/administración & dosificación , Utilización de Medicamentos/estadística & datos numéricos , Infecciones por VIH/epidemiología , Tuberculosis/epidemiología , Adolescente , Adulto , Antirretrovirales/uso terapéutico , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Población Rural/estadística & datos numéricos , Sudáfrica , Análisis Espacio-Temporal , Tuberculosis/diagnóstico
12.
Nature ; 570(7762): 528-532, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31168092

RESUMEN

Tuberculosis is the leading cause of death by an infectious disease worldwide1. However, the involvement of innate lymphoid cells (ILCs) in immune responses to infection with Mycobacterium tuberculosis (Mtb) is unknown. Here we show that circulating subsets of ILCs are depleted from the blood of participants with pulmonary tuberculosis and restored upon treatment. Tuberculosis increased accumulation of ILC subsets in the human lung, coinciding with a robust transcriptional response to infection, including a role in orchestrating the recruitment of immune subsets. Using mouse models, we show that group 3 ILCs (ILC3s) accumulated rapidly in Mtb-infected lungs and coincided with the accumulation of alveolar macrophages. Notably, mice that lacked ILC3s exhibited a reduction in the accumulation of early alveolar macrophages and decreased Mtb control. We show that the C-X-C motif chemokine receptor 5 (CXCR5)-C-X-C motif chemokine ligand 13 (CXCL13) axis is involved in Mtb control, as infection upregulates CXCR5 on circulating ILC3s and increases plasma levels of its ligand, CXCL13, in humans. Moreover, interleukin-23-dependent expansion of ILC3s in mice and production of interleukin-17 and interleukin-22 were found to be critical inducers of lung CXCL13, early innate immunity and the formation of protective lymphoid follicles within granulomas. Thus, we demonstrate an early protective role for ILC3s in immunity to Mtb infection.


Asunto(s)
Inmunidad Innata/inmunología , Linfocitos/clasificación , Linfocitos/inmunología , Macrófagos Alveolares/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Animales , Quimiocina CXCL13/inmunología , Femenino , Granuloma/inmunología , Granuloma/patología , Humanos , Interleucina-17/inmunología , Interleucinas/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Linfocitos/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Receptores CXCR5/inmunología , Transcriptoma/genética , Tuberculosis Pulmonar/genética , Interleucina-22
13.
BMC Genomics ; 20(1): 389, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31109296

RESUMEN

BACKGROUND: Repeated culture reduces within-sample Mycobacterium tuberculosis genetic diversity due to selection of clones suited to growth in culture and/or random loss of lineages, but it is not known to what extent omitting the culture step altogether alters genetic diversity. We compared M. tuberculosis whole genome sequences generated from 33 paired clinical samples using two methods. In one method DNA was extracted directly from sputum then enriched with custom-designed SureSelect (Agilent) oligonucleotide baits and in the other it was extracted from mycobacterial growth indicator tube (MGIT) culture. RESULTS: DNA directly sequenced from sputum showed significantly more within-sample diversity than that from MGIT culture (median 5.0 vs 4.5 heterozygous alleles per sample, p = 0.04). Resistance associated variants present as HAs occurred in four patients, and in two cases may provide a genotypic explanation for phenotypic resistance. CONCLUSIONS: Culture-free M. tuberculosis whole genome sequencing detects more within-sample diversity than a leading culture-based method and may allow detection of mycobacteria that are not actively replicating.


Asunto(s)
Variación Genética , Mycobacterium tuberculosis/genética , Adulto , Farmacorresistencia Bacteriana/genética , Humanos , Mycobacterium tuberculosis/aislamiento & purificación , Esputo/microbiología , Tuberculosis/microbiología , Secuenciación Completa del Genoma
15.
BMC Genomics ; 20(1): 433, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142261

RESUMEN

He authors reported that one of the authors' names was typeset incorrectly in the authorship list.

16.
Lancet Glob Health ; 7(2): e191-e199, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30683238

RESUMEN

BACKGROUND: Xpert MTB/RIF, the most widely used automated nucleic acid amplification test for tuberculosis, is available in more than 130 countries. Although diagnostic accuracy is well documented, anticipated improvements in patient outcomes have not been clearly identified. We performed an individual patient data meta-analysis to examine improvements in patient outcomes associated with Xpert MTB/RIF. METHODS: We searched PubMed, Embase, ClinicalTrials.gov, and the Pan African Clinical Trials Registry from inception to Feb 1, 2018, for randomised controlled trials (RCTs) comparing the use of Xpert MTB/RIF with sputum smear microscopy as tests for tuberculosis diagnosis in adults (aged 18 years or older). We excluded studies of patients with extrapulmonary tuberculosis, and studies in which mortality was not assessed. We used a two-stage approach for our primary analysis and a one-stage approach for the sensitivity analysis. To assess the primary outcome of cumulative 6-month all-cause mortality, we first performed logistic regression models (random effects for cluster randomised trials, with robust SEs for multicentre studies) for each trial, and then pooled the odds ratio (OR) estimates by a fixed-effects (inverse variance) or random-effects (Der Simonian Laird) meta-analysis. We adjusted for age and gender, and stratified by HIV status and previous tuberculosis-treatment history. The study protocol has been registered with PROSPERO, number CRD42014013394. FINDINGS: Our search identified 387 studies, of which five RCTs were eligible for analysis. 8567 adult clinic attendees (4490 [63·5%] of 7074 participants for whom data were available were HIV-positive) were tested for tuberculosis with Xpert MTB/RIF (Xpert group) versus sputum smear microscopy (sputum smear group), across five low-income and middle-income countries (South Africa, Brazil, Zimbabwe, Zambia, and Tanzania). The primary outcome (reported in three studies) occurred in 182 (4·5%) of 4050 patients in the Xpert group and 217 (5·3%) of 4093 patients in the smear group (pooled adjusted OR 0·88, 95% CI 0·68-1·14 [p=0·34]; for HIV-positive individuals OR 0·83, 0·65-1·05 [p=0·12]). Kaplan-Meier estimates showed a lower rate of death (12·73 per 100 person-years in the Xpert group vs 16·38 per 100 person-years in the sputum smear group) for HIV-positive patients (hazard ratio 0·76, 95% CI 0·60-0·97; p=0·03). The risk of bias was assessed as reasonable and the statistical heterogeneity across studies was low (I2<20% for the primary outcome). INTERPRETATION: Despite individual patient data analysis from five RCTs, we were unable to confidently rule in nor rule out an Xpert MTB/RIF-associated reduction in mortality among outpatients tested for tuberculosis. Reduction in mortality among HIV-positive patients in a secondary analysis suggests the possibility of population-level impact. FUNDING: US National Institutes of Health.


Asunto(s)
Mycobacterium tuberculosis/genética , Técnicas de Amplificación de Ácido Nucleico , Esputo/microbiología , Tuberculosis Pulmonar/diagnóstico , Adulto , Antituberculosos/uso terapéutico , Brasil/epidemiología , Causas de Muerte , Femenino , Infecciones por VIH/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Mortalidad , Mycobacterium tuberculosis/aislamiento & purificación , Oportunidad Relativa , Evaluación de Resultado en la Atención de Salud , Modelos de Riesgos Proporcionales , Sudáfrica/epidemiología , Tanzanía/epidemiología , Tiempo de Tratamiento/estadística & datos numéricos , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/epidemiología , Tuberculosis Pulmonar/mortalidad , Zambia/epidemiología , Zimbabwe/epidemiología
17.
Artículo en Inglés | MEDLINE | ID: mdl-30670422

RESUMEN

A critical gap in tuberculosis (TB) treatment is detection of emergent drug resistance. We hypothesized that advanced phenotyping with whole-genome sequencing (WGS) will detect low-frequency Mycobacterium tuberculosis drug resistance. We assessed a reporter mycobacteriophage (Φ2GFP10) in vitro to detect drug-resistant subpopulations and predict M. tuberculosis bactericidal activity in this pilot study. Subsequently, we prospectively studied 20 TB patients with serial Φ2GFP10, Xpert MTB/RIF, and M. tuberculosis culture through end of treatment. WGS was performed, and single nucleotide polymorphisms (SNPs) were examined to detect mixed infection in selected M. tuberculosis isolates. Resistant M. tuberculosis isolates were detected at 1:100,000, and changes in cytometry-gated events were predictive of in vitroM. tuberculosis bactericidal activity using the Φ2GFP10 assay. Emergent drug resistance was detected in one patient by Φ2GFP10 at 3 weeks but not by conventional testing (M. tuberculosis culture and GeneXpert). WGS revealed a phylogeographically distinct extensively drug-resistant tuberculosis (XDR-TB) genome, identical to an XDR-TB isolate from the patient's spouse. Variant lineage-specific SNPs were present early, suggesting mixed infection as the etiology of emergent resistance with temporal trends providing evidence for selection during treatment. Φ2GFP10 can detect low-frequency drug-resistant M. tuberculosis and with WGS characterize emergent M. tuberculosis resistance. In areas of high TB transmission and drug resistance, rapid screening for heteroresistance should be considered.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Bacteriófagos/genética , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Citometría de Flujo/métodos , Proteínas Fluorescentes Verdes/genética , Humanos , Pruebas de Sensibilidad Microbiana , Polimorfismo de Nucleótido Simple , Rifampin/farmacología , Esputo/microbiología , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Secuenciación Completa del Genoma
18.
Lancet Infect Dis ; 19(3): e77-e88, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30554996

RESUMEN

The emergence and expansion of the multidrug-resistant tuberculosis epidemic is a threat to the global control of tuberculosis. Multidrug-resistant tuberculosis is the result of the selection of resistance-conferring mutations during inadequate antituberculosis treatment. However, HIV has a profound effect on the natural history of tuberculosis, manifesting in an increased rate of disease progression, leading to increased transmission and amplification of multidrug-resistant tuberculosis. Interventions specific to HIV-endemic areas are urgently needed to block tuberculosis transmission. These interventions should include a combination of rapid molecular diagnostics and improved chemotherapy to shorten the duration of infectiousness, implementation of infection control measures, and active screening of multidrug-resistant tuberculosis contacts, with prophylactic regimens for individuals without evidence of disease. Development and improvement of the efficacy of interventions will require a greater understanding of the factors affecting the transmission of multidrug-resistant tuberculosis in HIV-endemic settings, including population-based molecular epidemiology studies. In this Series article, we review what we know about the transmission of multidrug-resistant tuberculosis in settings with high burdens of HIV and define the research priorities required to develop more effective interventions, to diminish ongoing transmission and the amplification of drug resistance.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/epidemiología , Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Enfermedades Endémicas , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/transmisión , Adulto , Antituberculosos/efectos adversos , Antituberculosos/uso terapéutico , Niño , Preescolar , Coinfección/tratamiento farmacológico , Coinfección/microbiología , Coinfección/virología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , VIH/inmunología , VIH/aislamiento & purificación , Humanos , Incidencia , Lactante , Recién Nacido , Tamizaje Masivo , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Sudáfrica/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/prevención & control
19.
Tuberculosis (Edinb) ; 109: 80-84, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29559125

RESUMEN

Tuberculosis (TB) remains a serious threat in underdeveloped areas. Mycobacterium tuberculosis curli pili (MTP), a virulence factor, is a potential biomarker for a reliable point of care (POC) test and was evaluated for its ability to react with Immunoglobulin G (IgG) in TB patients. An MTP synthetic peptide in a slot blot assay was used to screen serum/plasma samples (n = 65) in 3 separate cohorts, including 40 TB positive (16 HIV co-infected), 20 TB negative/HIV negative patients and 5 healthy volunteers. Forty samples were true positives (HIV positive, n = 16), 23 true negatives (HIV negative) and 2 false positives (HIV negative). The McNemar test demonstrated a 3.08% accuracy estimate (CI: -2.1% - 3.08%). This confirms that MTP is expressed during infection, including HIV-TB co-infection, is likely to be suitable for the design of a POC test and supports the validation of MTP for TB detection in larger patient populations.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Fimbrias Bacterianas/inmunología , Inmunoensayo/métodos , Inmunoglobulina G/inmunología , Mycobacterium tuberculosis/inmunología , Fragmentos de Péptidos/inmunología , Tuberculosis Pulmonar/diagnóstico , Anticuerpos Antibacterianos/sangre , Estudios de Casos y Controles , Humanos , Inmunoglobulina G/sangre , Fragmentos de Péptidos/síntesis química , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología
20.
Int J Antimicrob Agents ; 51(1): 77-81, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28843822

RESUMEN

Tuberculosis (TB) has been the scourge of the human race for many decades, claiming countless number of lives. This is further complicated by the ability of Mycobacterium tuberculosis to infect extrapulmonary sites, specifically the brain. These extrapulmonary forms of TB are difficult to treat owing to problems associated with drug delivery across the blood-brain barrier. Linezolid (LIN) and clofazimine (CFZ) are two of the more promising anti-TB drugs in recent times. In this study, BALB/c mice were aerosol-infected with M. tuberculosis H37Rv and were treated for 4 weeks with LIN [100 mg/kg body weight (BW)] or CFZ (100 mg/kg BW). Concurrently, it was investigated whether an aerosol TB infection would lead to dissemination of TB bacilli into the brain. Post-treatment brain and lung CFUs were determined together with serum, lung and brain drug concentrations. CFZ displayed a strong bactericidal effect in the lung, whilst LIN had a bacteriostatic effect. Mycobacterium tuberculosis appeared at 2 weeks post-infection in the untreated group (2.38 ± 0.43 log10 CFU) and more surprisingly at 3 weeks post-infection in the LIN-treated group (1.14 ± 0.99 log10 CFU). TB bacilli could not be detected in the brains of the CFZ-treated group. To the best of our knowledge, this is the first study showing the appearance of M. tuberculosis in the brain following a murine aerosol TB infection. This study may advocate the use of CFZ as prophylactic treatment to prevent the development of extrapulmonary TB of the central nervous system using a two-pronged approach.


Asunto(s)
Antituberculosos/sangre , Antituberculosos/uso terapéutico , Encéfalo/microbiología , Clofazimina/uso terapéutico , Linezolid/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control , Animales , Barrera Hematoencefálica/fisiología , Encéfalo/fisiología , Clofazimina/sangre , Modelos Animales de Enfermedad , Femenino , Linezolid/sangre , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...