Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 12(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38137225

RESUMEN

The use of a two-phase decanter (TwPD) for olive-oil extraction produces wastes and byproducts (a small volume of water from oil washing, olive leaves from the defoliator, and a high moisture pomace which can be destoned) that contain valuable bioactive compounds, such as phenolics and/or triterpenic acids. So far, there is no (water) or limited information (leaves and the destoned pomace fraction) on their content of bioactives, especially triterpenic acids. To contribute to the characterization of such streams from cultivars of international interest, in the present study, samples obtained from five mills from the region of Laconia (from one or two harvests) in Greece, where Koroneiki cv dominates, were screened for phenols and/or triterpenic acids. The leaves and pomace were dried at two temperatures (70 °C and/or 140 °C), and the pomace was also destoned before analysis. The liquid wastes contained low amounts of total (TPC) phenols (<140 mg gallic acid/L), hydroxytyrosol (<44 mg/L), and tyrosol (<33 mg/L). The olive leaves varied widely in TPC (12.8-57.4 mg gallic acid/g dry leaf) and oleuropein (0.4-56.8 mg/g dry leaf) but contained an appreciable amount of triterpenic acids, mainly oleanolic acid (~12.5-31 mg/g dry leaf, respectively). A higher drying temperature (140 vs. 70 °C) affected rather positively the TPC/oleuropein content, whereas triterpenic acids were unaffected. The destoned pomace TPC was 15.5-22.0 mg gallic acid/g dw, hydroxytyrosol 3.9-5.6 mg/g dw, and maslinic 5.5-19.3 mg/g dw. Drying at 140 °C preserved better its bioactive phenols, whereas triterpenic acids were not influenced. The present findings indicate that TwPD streams may have a prospect as a source of bioactives for added-value applications. Material handling, including drying conditions, may be critical but only for phenols.

2.
Foods ; 12(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38002177

RESUMEN

The objective of the present study was to evaluate the effects of an olive leaf extract obtained with an up-to-date laboratory method, when supplemented at different levels in laying hens' diets, on egg quality, egg yolk antioxidant parameters, fatty acid content, and liver pathology characteristics. Thus, 96 laying hens of the ISA-Brown breed were allocated to 48 experimental cages with two hens in each cage, resulting in 12 replicates per treatment. Treatments were: T1 (Control: basal diet); T2 (1% olive leaf extract); T3 (2.5% olive leaf extract); T4 (Positive control: 0.1% encapsulated oregano oil). Eggshell weight and thickness were improved in all treatments compared to the control, with T2 being significantly higher till the end of the experiment (p < 0.001). Egg yolk MDA content was lower for the T2 and T4 groups, while total phenol content and Haugh units were greater in the T2. The most improved fatty acid profile was the one of T3 yolks. The α-tocopherol yolk content was higher in all groups compared to T1. No effect was observed on cholesterol content at any treatment. Based on the findings, it can be inferred that the inclusion of olive leaf extract at a concentration of 1% in the diet leads to enhancements in specific egg quality attributes, accompanied by an augmentation of the antioxidant capacity.

3.
Food Res Int ; 174(Pt 1): 113599, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986461

RESUMEN

In recent years, there has been a growing demand for minimally processed foods that offer health benefits and premium sensory characteristics. This trend has led to increased consumption of virgin (VOs) and cold-pressed (CPOs) oils, which are rich sources of bioactive substances. To meet consumer needs for new oil products conferring multi-functional properties over a longer storage period, the scientific community has been revisiting traditional enrichment practices while exploring novel fortification technologies. In the last four years, the interest has been growing faster; an ascending number of annually published studies are about the addition of different plant materials, agri-food by-products, or wastes (intact or extracts) to VOs and CPOs using traditional or innovative fortification processes. Considering this trend, the present review aims to provide an overview and summarize the key findings from relevant papers that were retrieved from extensively searched databases. Our meta-analysis focuses on exposing the most recent trends regarding the exploitation of VOs and CPOs as substrates, the fortification agents and their form of use, as well as the fortification technologies employed. The review critically discusses possible health claim and labeling issues and highlights some chemical and microbial safety concerns along with authenticity issues and gaps in quality specifications that manufacturers have yet to address. All these aspects are examined from the perspective of developing new oil products with well-balanced techno-, senso- and bio-functional characteristics.


Asunto(s)
Aceites de Plantas , Verduras , Aceites de Plantas/química , Manipulación de Alimentos , Oxidación-Reducción , Estrés Oxidativo
4.
Antioxidants (Basel) ; 12(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37760026

RESUMEN

Olive leaves are byproducts οf the agro-industrial sector and are rich in bioactive compounds with antioxidant properties. They could be supplemented in poultry diets powdered or less frequently as extracts to improve performance, health and product quality. The objective of this study was to investigate the possible beneficial effects of an aqueous isopropanol olive leaf extract-purified through filtration (250-25 µm) and a resin (XAD-4)-when supplemented in broiler chickens' diets, on meat quality parameters, focusing mainly on antioxidant parameters as there is limited published information. For this purpose, four-hundred-and-eighty-day-old broilers were randomly assigned to four dietary treatments: T1 (control: basal diet); T2 (1% olive leaf extract); T3 (2.5% olive leaf extract); T4 (positive control: 0.1% encapsulated oregano oil commercially used as feed additive). At the end of the experimental period (day 42), the birds were slaughtered, and samples from breast, thigh meat and liver were collected for antioxidant parameters evaluation. On day 1, after slaughter, in thigh meat, Malondialdehyde (MDA) was lower in T2 compared to T3, and total phenolic content (TPC) was higher in T2 compared to T3 and T4. Total antioxidant capacity (TAC) was increased in T2 and T4 breast meat compared to the control. In liver, T4 treatment resulted in higher TPC. The lack of dose-dependent effect for olive leaf extract may be attributed to the pro-oxidant effects of some bioactive compounds found in olive leaves, such as oleuropein, when supplemented at higher levels. In summary, it can be inferred that the inclusion of 1% olive leaf extract in the feed of broilers has the potential to mitigate oxidation in broiler meat and maybe enhance its quality.

5.
Molecules ; 28(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903511

RESUMEN

Assessment of the antioxidant activity of different types of natural compounds is a complex research area that encompasses various in vitro tests and in vivo studies. Sophisticated modern analytical tools permit the unambiguous characterization of the compounds present in a matrix. The contemporary researcher, knowing the chemical structure of the compounds present, can carry out quantum chemical calculations that provide important physicochemical information assisting the prediction of antioxidant potential and the mechanism behind the activity of target compounds before further experimentation. The efficiency of calculations is steadily improved due to the rapid evolution of both hardware and software. It is possible, consequently, to study compounds of medium or even larger size, incorporating also models that simulate the liquid phase (solution). This review contributes to the establishment of theoretical calculations as an inherent part of the antioxidant activity assessment process, having as a case study the complex mixtures of olive bioactive secoiridoids (oleuropein, ligstroside, and related compounds). The literature indicates great variability in theoretical approaches and models used so far for only a limited number of this group of phenolic compounds. Proposals are made for standardization of methodology (reference compounds, DFT functional, basis set size, and solvation model) to facilitate comparisons and communication of findings.


Asunto(s)
Antioxidantes , Olea , Antioxidantes/química , Olea/química , Iridoides/química , Fenoles/química , Estándares de Referencia , Aceite de Oliva/análisis
6.
Planta Med ; 87(7): 528-537, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33618378

RESUMEN

Plants of the genus Hypericum, commonly known as "St. John's wort" ("spathohorto" or "valsamo" in Greek), have been used since antiquity for their therapeutic properties. Wild-harvested Hypericum plants are still popular today in herbal medicines, commercially exploited due to their bioactive compounds, hypericin and hyperforin, which have antidepressant, antimicrobial and antiviral activity. Species identification of commercial products is therefore important and DNA barcoding, a molecular method that uses small sequences of organisms' genome as barcodes, can be useful in this direction. In this study, we collected plants of the genus Hypericum that grow wild in North-Eastern Greece and explored the efficiency of matK, and trnH-psbA regions as DNA barcodes for their identification. We focused on 5 taxa, namely H. aucheri, H. montbretii, H. olympicum, H. perforatum subsp. perforatum, and H. thasium, the latter a rare Balkan endemic species collected for the first time from mainland Greece. matK (using the genus-specific primers designed herein), trnH-psbA, and their combination were effectively used for the identification of the 5 Hypericum taxa and the discrimination of different H. perforatum subsp. perforatum populations. These barcodes were also able to discriminate Greek populations of H. perforatum, H. aucheri, H. montbretii, and H. olympicum from populations of the same species growing in other countries.


Asunto(s)
Hypericum , Plantas Medicinales , Código de Barras del ADN Taxonómico , Grecia , Hypericum/genética , Extractos Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...