Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Nat Plants ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227727

RESUMEN

Elton's biotic resistance hypothesis posits that species-rich communities are more resistant to invasion. However, it remains unknown how species, phylogenetic and functional richness, along with environmental and human-impact factors, collectively affect plant invasion as alien species progress along the introduction-naturalization-invasion continuum. Using data from 12,056 local plant communities of the Czech Republic, this study reveals varying effects of these factors on the presence and richness of alien species at different invasion stages, highlighting the complexity of the invasion process. Specifically, we demonstrate that although species richness and functional richness of resident communities had mostly negative effects on alien species presence and richness, the strength and sometimes also direction of these effects varied along the continuum. Our study not only underscores that evidence for or against Elton's biotic resistance hypothesis may be stage-dependent but also suggests that other invasion hypotheses should be carefully revisited given their potential stage-dependent nature.

2.
Glob Chang Biol ; 30(7): e17426, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39049564

RESUMEN

The ecological impact of non-native species arises from their establishment in local assemblages. However, the rates of non-native spread in new regions and their determinants have not been comprehensively studied. Here, we combined global databases documenting the occurrence of non-native species and residence of non-native birds, mammals, and vascular plants at regional and local scales to describe how the likelihood of non-native occurrence and their proportion in local assemblages relate with their residence time and levels of human usage in different ecosystems. Our findings reveal that local non-native occurrence generally increases with residence time. Colonization is most rapid in croplands and urban areas, while it is slower and variable in natural or semi-natural ecosystems. Notably, non-native occurrence continues to rise even 200 years after introduction, especially for birds and vascular plants, and in other land-use types rather than croplands and urban areas. The impact of residence time on non-native proportions is significant only for mammals. We conclude that the continental exchange of biotas requires considerable time for effects to manifest at the local scale across taxa and land-use types. The unpredictability of future impacts, implied by the slow spread of non-native species, strengthens the call for stronger regulations on the exchange of non-native species to reduce the long-lasting invasion debt looming on ecosystems' future.


Asunto(s)
Aves , Especies Introducidas , Mamíferos , Animales , Plantas , Ecosistema , Biodiversidad , Conservación de los Recursos Naturales
3.
Ecol Evol ; 14(4): e11167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623521

RESUMEN

The savanna ecosystem is dominated by grasses, which are a key food source for many species of grazing animals. This relationship creates a diverse mosaic of habitats and contributes to the high grass species richness of savannas. However, how grazing interacts with environmental conditions in determining grass species richness and abundance in savannas is still insufficiently understood. In the Kruger National Park, South Africa, we recorded grass species and estimated their covers in 60 plots 50 × 50 m in size, accounting for varying proximity to water and different bedrocks. To achieve this, we located plots (i) near perennial rivers, near seasonal rivers, and on crests that are distant from all water sources and (ii) on nutrient-rich basaltic and nutrient-poor granitic bedrock. The presence and abundance of large herbivores were recorded by 60 camera traps located in the same plots. Grass cover was higher at crests and seasonal rivers than at perennial rivers and on basalts than on granites. The relationship between grass species richness and herbivore abundance or species richness was positive at crests, while that between grass species richness and herbivore species richness was negative at seasonal rivers. We found no support for controlling the dominance of grasses by herbivores in crests, but herbivore-induced microsite heterogeneity may account for high grass species richness there. In contrast, the decrease in grass species richness with herbivore species richness at seasonal rivers indicates that the strong grazing pressure over-rides the resistance of some species to grazing and trampling. We suggest that the relationships between grasses and herbivores may work in both directions, but the relationship is habitat-dependent, so that in less productive environments, the effect of herbivores on vegetation prevails, while in more productive environments along rivers the effect of vegetation and water supply on herbivores is more important.

4.
Nat Commun ; 15(1): 1330, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351066

RESUMEN

Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.


Asunto(s)
Ciudadanía , Ecosistema , Humanos , Tamaño del Genoma , Especies Introducidas , Ecología , Biodiversidad , Plantas/genética
5.
Nat Ecol Evol ; 8(3): 477-488, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332027

RESUMEN

Successful alien species may experience a period of quiescence, known as the lag phase, before becoming invasive and widespread. The existence of lags introduces severe uncertainty in risk analyses of aliens as the present state of species is a poor predictor of future distributions, invasion success and impact. Predicting a species' ability to invade and pose negative impacts requires a quantitative understanding of the commonality and magnitude of lags, environmental factors and mechanisms likely to terminate lag. Using herbarium and climate data, we analysed over 5,700 time series (species × regions) in 3,505 naturalized plant species from nine regions in temperate and tropical climates to quantify lags and test whether there have been shifts in the species' climatic space during the transition from the lag phase to the expansion phase. Lags were identified in 35% of the assessed invasion events. We detected phylogenetic signals for lag phases in temperate climate regions and that annual self-fertilizing species were less likely to experience lags. Where lags existed, they had an average length of 40 years and a maximum of 320 years. Lengthy lags (>100 years) were more likely to occur in perennial plants and less frequent in self-pollinating species. For 98% of the species with a lag phase, the climate spaces sampled during the lag period differed from those in the expansion phase based on the assessment of centroid shifts or degree of climate space overlap. Our results highlight the importance of functional traits for the onset of the expansion phase and suggest that climate discovery may play a role in terminating the lag phase. However, other possibilities, such as sampling issues and climate niche shifts, cannot be ruled out.


Asunto(s)
Cambio Climático , Especies Introducidas , Filogenia , Clima Tropical , Plantas
6.
Conserv Biol ; 38(2): e14214, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38051018

RESUMEN

The Environmental Impact Classification for Alien Taxa (EICAT) is an important tool for biological invasion policy and management and has been adopted as an International Union for Conservation of Nature (IUCN) standard to measure the severity of environmental impacts caused by organisms living outside their native ranges. EICAT has already been incorporated into some national and local decision-making procedures, making it a particularly relevant resource for addressing the impact of non-native species. Recently, some of the underlying conceptual principles of EICAT, particularly those related to the use of the precautionary approach, have been challenged. Although still relatively new, guidelines for the application and interpretation of EICAT will be periodically revisited by the IUCN community, based on scientific evidence, to improve the process. Some of the criticisms recently raised are based on subjectively selected assumptions that cannot be generalized and may harm global efforts to manage biological invasions. EICAT adopts a precautionary principle by considering a species' impact history elsewhere because some taxa have traits that can make them inherently more harmful. Furthermore, non-native species are often important drivers of biodiversity loss even in the presence of other pressures. Ignoring the precautionary principle when tackling the impacts of non-native species has led to devastating consequences for human well-being, biodiversity, and ecosystems, as well as poor management outcomes, and thus to significant economic costs. EICAT is a relevant tool because it supports prioritization and management of non-native species and meeting and monitoring progress toward the Kunming-Montreal Global Biodiversity Framework (GBF) Target 6.


Uso de la Clasificación de Impacto Ambiental de los Taxones Exóticos de la UICN para la toma de decisiones Resumen La Clasificación de Impacto Ambiental de los Taxones Exóticos (EICAT, en inglés) es una herramienta importante para las políticas y manejo de las invasiones biológicas y ha sido adoptada como un estándar de la Unión Internacional para la Conservación de la Naturaleza (UICN) para medir la seriedad del impacto ambiental causado por los organismos que viven fuera de su extensión nativa. La EICAT ya ha sido incorporada a algunos procedimientos locales y nacionales de toma de decisiones, lo que la vuelve un recurso particularmente relevante para abordar el impacto de las especies no nativas. Algunos principios conceptuales subyacentes de la EICAT han sido cuestionados recientemente, en particular aquellos relacionados con el uso del principio de precaución. Aunque todavía son relativamente nuevas, las directrices para la aplicación e interpretación de la EICAT tendrán una revisión periódica, basada en evidencia científica, por parte de la comunidad de la UICN para mejorar el proceso. Algunas de las críticas recientes están basadas en suposiciones seleccionadas subjetivamente que no pueden generalizarse y podrían perjudicar los esfuerzos globales para manejar las invasiones biológicas. La EICAT adopta un principio de precaución cuando considera el historial de impacto de una especie en cualquier otro lugar ya que algunos taxones tienen características que podrían volverlos más dañinos. Además, las especies no nativas suelen ser factores de pérdida de bidiversidad, incluso bajo otras presiones. Cuando ignoramos el principio de precaución al abordar el impacto de las especies no nativas, hay consecuencias devastadoras para el bienestar humano, la biodiversidad y los ecosistemas, así como resultados pobres de conservación, y por lo tanto con costos económicos importantes. La EICAT es una herramienta relevante porque respalda la priorización y el manejo de las especies no nativas y ayuda con el cumplimiento y monitoreo del progreso para llegar al objetivo 6 del Marco Mundial de Biodiversidad Kunming­Montreal.


Asunto(s)
Ecosistema , Especies Introducidas , Humanos , Conservación de los Recursos Naturales , Biodiversidad
7.
Nat Commun ; 14(1): 6244, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828007

RESUMEN

Darwin's naturalization conundrum describes two seemingly contradictory hypotheses regarding whether alien species closely or distantly related to native species should be more likely to naturalize in regional floras. Both expectations have accumulated empirical support, and whether such apparent inconsistency can be reconciled at the global scale is unclear. Here, using 219,520 native and 9,531 naturalized alien plant species across 487 globally distributed regions, we found a latitudinal gradient in Darwin's naturalization conundrum. Naturalized alien plant species are more closely related to native species at higher latitudes than they are at lower latitudes, indicating a greater influence of preadaptation in harsher climates. Human landscape modification resulted in even steeper latitudinal clines by selecting aliens distantly related to natives in warmer and drier regions. Our results demonstrate that joint consideration of climatic and anthropogenic conditions is critical to reconciling Darwin's naturalization conundrum.


Asunto(s)
Ecosistema , Magnoliopsida , Humanos , Ciudadanía , Especies Introducidas , Plantas
8.
Sci Adv ; 9(40): eadi1897, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37792943

RESUMEN

Plant introductions outside their native ranges by humans have led to substantial ecological consequences. While we have gained considerable knowledge about intercontinental introductions, the distribution and determinants of intracontinental aliens remain poorly understood. Here, we studied naturalized (i.e., self-sustaining) intracontinental aliens using native and alien floras of 243 mainland regions in North America, South America, Europe, and Australia. We revealed that 4510 plant species had intracontinental origins, accounting for 3.9% of all plant species and 56.7% of all naturalized species in these continents. In North America and Europe, the numbers of intracontinental aliens peaked at mid-latitudes, while the proportion peaked at high latitudes in Europe. Notably, we found predominant poleward naturalization, primarily due to larger native species pools in low-latitudes. Geographic and climatic distances constrained the naturalization of intracontinental aliens in Australia, Europe, and North America, but not in South America. These findings suggest that poleward naturalizations will accelerate, as high latitudes become suitable for more plant species due to climate change.


Asunto(s)
Ciudadanía , Cambio Climático , Humanos , Europa (Continente) , Plantas , América del Norte , Ecosistema
9.
Nat Ecol Evol ; 7(10): 1633-1644, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37652998

RESUMEN

Human activities are causing global biotic redistribution, translocating species and providing them with opportunities to establish populations beyond their native ranges. Species originating from certain global regions, however, are disproportionately represented among naturalized aliens. The evolutionary imbalance hypothesis posits that differences in absolute fitness among biogeographic divisions determine outcomes when biotas mix. Here, we compile data from native and alien distributions for nearly the entire global seed plant flora and find that biogeographic conditions predicted to drive evolutionary imbalance act alongside climate and anthropogenic factors to shape flows of successful aliens among regional biotas. Successful aliens tend to originate from large, biodiverse regions that support abundant populations and where species evolve against a diverse backdrop of competitors and enemies. We also reveal that these same native distribution characteristics are shared among the plants that humans select for cultivation and economic use. In addition to influencing species' innate potentials as invaders, we therefore suggest that evolutionary imbalance shapes plants' relationships with humans, impacting which species are translocated beyond their native distributions.


Asunto(s)
Biodiversidad , Especies Introducidas , Humanos , Clima , Plantas , Semillas
10.
Proc Natl Acad Sci U S A ; 120(30): e2300981120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459510

RESUMEN

Assessing the distribution of geographically restricted and evolutionarily unique species and their underlying drivers is key to understanding biogeographical processes and critical for global conservation prioritization. Here, we quantified the geographic distribution and drivers of phylogenetic endemism for ~320,000 seed plants worldwide and identified centers and drivers of evolutionarily young (neoendemism) and evolutionarily old endemism (paleoendemism). Tropical and subtropical islands as well as tropical mountain regions displayed the world's highest phylogenetic endemism. Most tropical rainforest regions emerged as centers of paleoendemism, while most Mediterranean-climate regions showed high neoendemism. Centers where high neo- and paleoendemism coincide emerged on some oceanic and continental fragment islands, in Mediterranean-climate regions and parts of the Irano-Turanian floristic region. Global variation in phylogenetic endemism was well explained by a combination of past and present environmental factors (79.8 to 87.7% of variance explained) and most strongly related to environmental heterogeneity. Also, warm and wet climates, geographic isolation, and long-term climatic stability emerged as key drivers of phylogenetic endemism. Neo- and paleoendemism were jointly explained by climatic and geological history. Long-term climatic stability promoted the persistence of paleoendemics, while the isolation of oceanic islands and their unique geological histories promoted neoendemism. Mountainous regions promoted both neo- and paleoendemism, reflecting both diversification and persistence over time. Our study provides insights into the evolutionary underpinnings of biogeographical patterns in seed plants and identifies the areas on Earth with the highest evolutionary and biogeographical uniqueness-key information for setting global conservation priorities.


Asunto(s)
Biodiversidad , Evolución Biológica , Filogenia , Semillas , Geología
11.
New Phytol ; 239(6): 2389-2403, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37438886

RESUMEN

Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.


Asunto(s)
Ecosistema , Tracheophyta , Tamaño del Genoma , Ciudadanía , Ploidias , Especies Introducidas , ADN
12.
Proc Biol Sci ; 290(1998): 20222450, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37161334

RESUMEN

Alien species are widely linked to biodiversity change, but the extent to which they are associated with the reshaping of ecological communities is not well understood. One possible mechanism is that assemblages where alien species are found exhibit elevated temporal turnover. To test this, we identified assemblages of vascular plants in the BioTIME database for those assemblages in which alien species are either present or absent and used the Jaccard measure to compute compositional dissimilarity between consecutive censuses. We found that, although alien species are typically rare in invaded assemblages, their presence is associated with an increase in the average rate of compositional change. These differences in compositional change between invaded and uninvaded assemblages are not linked to differences in species richness but rather to species replacement (turnover). Rapid compositional restructuring of assemblages is a major contributor to biodiversity change, and as such, our results suggest a role for alien species in bringing this about.


Asunto(s)
Tracheophyta , Biodiversidad , Bases de Datos Factuales , Especies Introducidas
13.
Nat Commun ; 14(1): 2090, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045818

RESUMEN

While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.


Asunto(s)
Hormigas , Ecosistema , Animales , Especies Introducidas , Incidencia , Biodiversidad , Mamíferos
14.
J Chem Ecol ; 49(7-8): 437-450, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37099216

RESUMEN

The metabolome represents an important functional trait likely important to plant invasion success, but we have a limited understanding of whether the entire metabolome or targeted groups of compounds confer an advantage to invasive as compared to native taxa. We conducted a lipidomic and metabolomic analysis of the cosmopolitan wetland grass Phragmites australis. We classified features into metabolic pathways, subclasses, and classes. Subsequently, we used Random Forests to identify informative features to differentiate five phylogeographic and ecologically distinct lineages: European native, North American invasive, North American native, Gulf, and Delta. We found that lineages had unique phytochemical fingerprints, although there was overlap between the North American invasive and North American native lineages. Furthermore, we found that divergence in phytochemical diversity was driven by compound evenness rather than metabolite richness. Interestingly, the North American invasive lineage had greater chemical evenness than the Delta and Gulf lineages but lower evenness than the North American native lineage. Our results suggest that metabolomic evenness may represent a critical functional trait within a plant species. Its role in invasion success, resistance to herbivory, and large-scale die-off events common to this and other plant species remain to be investigated.


Asunto(s)
Poaceae , Humedales , Plantas , Fenotipo , Fitoquímicos
15.
Sci Total Environ ; 877: 162961, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958556

RESUMEN

Humans have introduced non-native trees (NNT) all over the world to take advantage of the plethora of benefits they provide. However, depending on the context, NNT may present a diverse range of effects on ecosystem services (ES), from benefits to drawbacks, which may hinder the development of policies for these species. Unfortunately, the attempts so far to understand the impacts of NNT on ES only explained a low proportion of their variation. Here we analyze the variation in impacts of NNT on regulating ecosystem services (RES) by using a global database, which covers the effect size of multiple NNT species on six RES (climate regulation, soil erosion regulation, soil fertility, soil formation, hydrological cycle regulation, and fire protection). We used a wide range of predictors to account for the context-dependency of impacts distributed in five groups: the RES type, functional traits of both the NNT and the dominant NT of the recipient ecosystem, phylogenetic and functional distances between NNT and NT, climatic context, and human population characteristics. Using boosted regression trees and regression trees, we found that the most influential predictors of NNT impacts on RES were annual mean temperatures and precipitation seasonality, followed by the type of RES, human population density, and NNT height. In regions with warm temperatures and low seasonality, NNT tended to increase RES. NNT impacts were greater in densely populated regions. Smaller NNT exerted greater positive impacts on climate regulation and soil erosion regulation in tropical regions than in other climates. We highlight that benign climates and high population density exacerbate the effects of NNT on RES, and that soil fertility is the most consistently affected RES. Knowledge of the factors that modulate NNT impacts can help to predict their potential effects on RES in different parts of the world and at various environmental settings.


Asunto(s)
Ecosistema , Suelo , Humanos , Filogenia , Temperatura
16.
Annu Rev Plant Biol ; 74: 635-670, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36750415

RESUMEN

Plant invasions, a byproduct of globalization, are increasing worldwide. Because of their ecological and economic impacts, considerable efforts have been made to understand and predict the success of non-native plants. Numerous frameworks, hypotheses, and theories have been advanced to conceptualize the interactions of multiple drivers and context dependence of invasion success with the aim of achieving robust explanations with predictive power. We review these efforts from a community-level perspective rather than a biogeographical one, focusing on terrestrial systems, and explore the roles of intrinsic plant properties in determining species invasiveness, as well as the effects of biotic and abiotic conditions in mediating ecosystem invasibility (or resistance) and ecological and evolutionary processes. We also consider the fundamental influences of human-induced changes at scales ranging from local to global in triggering, promoting, and sustaining plant invasions and discuss how these changes could alter future invasion trajectories.


Asunto(s)
Ecosistema , Plantas , Humanos , Evolución Biológica , Especies Introducidas
17.
New Phytol ; 237(4): 1432-1445, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36375492

RESUMEN

Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering basic research and biodiversity conservation. Here, we used machine learning (random forests, extreme gradient boosting, and neural networks) and conventional statistical methods (generalized linear models and generalized additive models) to test environment-related hypotheses of broad-scale vascular plant diversity gradients and to model and predict species richness and phylogenetic richness worldwide. To this end, we used 830 regional plant inventories including c. 300 000 species and predictors of past and present environmental conditions. Machine learning showed a superior performance, explaining up to 80.9% of species richness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques for disentangling complex and interacting associations between the environment and plant diversity. Current climate and environmental heterogeneity emerged as the primary drivers, while past environmental conditions left only small but detectable imprints on plant diversity. Finally, we combined predictions from multiple modeling techniques (ensemble predictions) to reveal global patterns and centers of plant diversity at multiple resolutions down to 7774 km2 . Our predictive maps provide accurate estimates of global plant diversity available at grain sizes relevant for conservation and macroecology.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Filogenia , Clima , Modelos Lineales , Plantas
18.
NPJ Biodivers ; 2(1): 13, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-39242656

RESUMEN

Identifying conditions and traits that allow an introduced species to grow and spread, from being initially rare to becoming abundant (defined as invasiveness), is the crux of invasion ecology. Invasiveness and abundance are related but not the same, and we need to differentiate these concepts. Predicting both species abundance and invasiveness and their relationship in an invaded community is highly contextual, being contingent on the community trait profile and its invasibility. We operationalised a three-pronged invasion framework that considers traits, environmental context, and propagule pressure. Specifically, we measure the invasiveness of an alien species by combining three components (performance reflecting environmental suitability, product of species richness and the covariance between interaction strength and species abundance, and community-level interaction pressure); the expected population growth rate of alien species simply reflects the total effect of propagule pressure and the product of their population size and invasiveness. The invasibility of a community reflects the size of opportunity niches (the integral of positive invasiveness in the trait space) under the given abiotic conditions of the environment. Both species abundance and the surface of invasiveness over the trait space can be dynamic and variable. Whether an introduced species with functional traits similar to those of an abundant species in the community exhibits high or low invasiveness depends largely on the kernel functions of performance and interaction strength with respect to traits and environmental conditions. Knowledge of the covariance between interaction strength and species abundance and these kernel functions, thus, holds the key to accurate prediction of invasion dynamics.

20.
Nat Ecol Evol ; 6(11): 1723-1732, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36253544

RESUMEN

The redistribution of alien species across the globe accelerated with the start of European colonialism. European powers were responsible for the deliberate and accidental transportation, introduction and establishment of alien species throughout their occupied territories and the metropolitan state. Here, we show that these activities left a lasting imprint on the global distribution of alien plants. Specifically, we investigated how four European empires (British, Spanish, Portuguese and Dutch) structured current alien floras worldwide. We found that compositional similarity is higher than expected among regions that once were occupied by the same empire. Further, we provide strong evidence that floristic similarity between regions occupied by the same empire increases with the time a region was occupied. Network analysis suggests that historically more economically or strategically important regions have more similar alien floras across regions occupied by an empire. Overall, we find that European colonial history is still detectable in alien floras worldwide.


Asunto(s)
Colonialismo , Especies Introducidas , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...