Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 267(Pt 1): 131573, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614188

RESUMEN

DNA, vital for biological processes, encodes hereditary data for protein synthesis, shaping cell structure and function. Since revealing its structure, DNA has become a target for various therapeutically vital molecules, spanning antidiabetic to anticancer drugs. These agents engage with DNA-associated proteins, DNA-RNA hybrids, or bind directly to the DNA helix, triggering diverse downstream effects. These interactions disrupt vital enzymes and proteins essential for maintaining cell structure and function. Analysing drug-DNA interactions has significantly advanced our understanding of drug mechanisms. Glipizide, an antidiabetic drug, is known to cause DNA damage in adipocytes. However, its extract mechanism of DNA interaction is unknown. This study delves into the interaction between glipizide and DNA utilizing various biophysical tools and computational technique to gain insights into the interaction mechanism. Analysis of UV-visible and fluorescence data reveals the formation of complex between DNA and glipizide. The binding affinity of glipizide to DNA was of moderate strength. Examination of thermodynamic parameters at different temperatures suggests that the binding was entropically spontaneous and energetically favourable. Various experiments such as thermal melting assays, viscosity measurement, and dye displacement assays confirmed the minor grove nature of binding of glipizide with DNA. Molecular dynamics studies confirmed the glipizide forms stable complex with DNA when simulated by mimicking the physiological conditions. The binding was mainly favoured by hydrogen bonds and glipizide slightly reduced nucleotide fluctuations of DNA. The study deciphers the mechanism of interaction of glipizide with DNA at molecular levels.


Asunto(s)
ADN , Glipizida , Simulación de Dinámica Molecular , Termodinámica , Glipizida/química , Glipizida/farmacología , ADN/química , ADN/metabolismo , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Hipoglucemiantes/química , Hipoglucemiantes/farmacología
2.
Heliyon ; 10(5): e27361, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495183

RESUMEN

PKM2 (Pyruvate kinase M2) is the isoform of pyruvate kinase which is known to catalyse the last step of glycolysis that is responsible for energy production. This specific isoform is known to be highly expressed in certain cancerous conditions. Considering the role of this protein in various cancer conditions, we used PKM2 as a target protein to identify the potential compounds against this target. In this study, we have examined 96 compounds of Zanthoxylum armatum using an array of computational and in silico tools. The compounds were assessed for toxicity then their anticancer potential was predicted. The virtual screening was done with molecular docking followed by a detailed examination using molecular dynamics simulation. The majority of the compounds showed a higher probability of being antineoplastic. Based on toxicity, predicted anticancer potential, binding affinity, and binding site, three compounds (nevadensin, asarinin, and kaempferol) were selected as hit compounds. The binding energy of these compounds with PKM2 ranged from -7.7 to -8.3 kcal/mol and all hit compounds interact at the active site of the protein. The selected hit compounds formed a stable complex with PKM2 when simulated under physiological conditions. The dynamic analysis showed that these compounds remained attached to the active site till the completion of molecular simulation. MM-PBSA analysis showed that nevadensin exhibited a higher affinity towards PKM2 compared to asarinin and kaempferol. These compounds need to be assessed properties in vivo and in vitro to validate their efficacy.

3.
Int J Biol Macromol ; 266(Pt 1): 130912, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513896

RESUMEN

Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.


Asunto(s)
Proliferación Celular , Hidroxicloroquina , Simulación de Dinámica Molecular , Fosfatidilinositol 3-Quinasas , Neoplasias de la Próstata , Microambiente Tumoral , Humanos , Masculino , Hidroxicloroquina/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Movimiento Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología
4.
Int J Biol Macromol ; 258(Pt 2): 128900, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128802

RESUMEN

Neurological disorders (NDs) have become a major cause of both cognitive and physical disabilities worldwide. In NDs, misfolded proteins tend to adopt a ß-sheet-rich fibrillar structure called amyloid. Amyloid beta (Aß) plays a crucial role in the nervous system. The misfolding and aggregation of Aß are primary factors in the progression of Alzheimer's disease (AD). Inhibiting the oligomerization and aggregation of Aß is considered as an effective strategy against NDs. While it is known that berberine analogs exhibit anti-Aß aggregation properties, the precise mechanism of action remains unclear. In this study, we have employed computational approaches to unravel the possible mechanism by which berberine combats Aß aggregation. The introduction of berberine was observed to delay the equilibrium of Aß16-21 oligomerization. Initially, within the first 10 ns of simulation, ß-sheets content was 12.89 % and gradually increased to 22.19 % within the first 20 ns. This upward trend continued, reaching 32.80 %. However, berberine substantially reduced the formation of ß-sheets to 1.36 %. These findings decipher the potency of berberine against Aß16-21 oligomerization, a crucial step for ß-sheet formation. Additionally, a remarkable decrease in total number of hydrogen bonds was found in the presence of berberine. Berberine also led to a slight reduction in the flexibility of Aß16-21, which may be due to the formation of a more stable structures. This study offers valuable insights at the mechanistic level, which could prove beneficial in the development of new drugs to combat NDs.


Asunto(s)
Enfermedad de Alzheimer , Berberina , Humanos , Péptidos beta-Amiloides/metabolismo , Berberina/farmacología , Amiloide/química , Simulación por Computador , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química
5.
Microsc Res Tech ; 87(1): 42-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37660303

RESUMEN

The development of antibiotic resistant microbial pathogens has become a global health threat and a major concern in modern medicine. The problem of antimicrobial resistance (AMR) has majorly arisen due to sub-judicious use of antibiotics in health care and livestock industry. A slow progress has been made in last two decades in discovery of new antibiotics. A new strategy in combatting AMR is to modulate or disarm the microbes for their virulence and pathogenicity. Plants are considered as promising source for new drugs against AMR pathogens. In this study, fraction-based screening of the Cinnamomum zeylanicum extract was performed followed by detailed investigation of antiquorum sensing and antibiofilm activities of the most active fraction that is, C. zeylanicum hexane fraction (CZHF). More than 75% reduction in violacein pigment of C. violaceum 12472 was overserved. CZHF successfully modulated the virulence of Pseudomonas aeruginosa PAO1 by 60.46%-78.35%. A similar effect was recorded against Serratia marcescens MTCC 97. A broad-spectrum inhibition of biofilm development was found in presence of sub-MICs of CZHF. The colonization of bacteria onto the glass coverslips was remarkably reduced apart from the reduction in exopolymeric substances. Alkaloids and terpenoids were found in CZHF. GC/MS analysis revealed the presence of cinnamaldehyde dimethyl acetal, 2-propenal, coumarin, and α-copaene as major phytocompounds. This study provides enough evidence to support potency of C. zeylanicum extract in targeting the virulence of Gram -ve pathogenic bacteria. The plant extract or active compounds can be developed as successful drugs after careful in vivo examination to target microbial infections. RESEARCH HIGHLIGHTS: Hexane fraction of Cinnamomum zeylanicum is active against QS and biofilms. The broad-spectrum antibiofilm activity was further confirmed by microscopic analysis. Dimethyl acetal, 2-propenal, coumarin, α-copaene, and so forth are major phytocompounds.


Asunto(s)
Cinnamomum zeylanicum , Percepción de Quorum , Hexanos/farmacología , Acroleína/farmacología , Biopelículas , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Bacterias , Cumarinas/farmacología
6.
RSC Adv ; 13(51): 35841-35852, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38090073

RESUMEN

Antimicrobial resistance (AMR), a condition in which the efficacy of antimicrobial drugs in fighting microorganisms is reduced, has become a global challenge. Multidrug resistance (MDR) has been developing in microorganisms, where they can resist multiple medications. In particular, there has been a rise in MDR as well as extensively drug-resistant (XDR) strains of Pseudomonas aeruginosa in some regions, with prevalence rates ranging from 15% to 30%. The application of nanotechnology ranges from diagnostics to drug-delivery systems, revolutionizing healthcare, and improving disease treatment. We aimed to investigate the efficacy of titanium dioxide nanoparticles (TiO2-NPs) against various virulent traits of P. aeruginosa and S. marcescens. More than 50% reduction in the production of virulent pigments of P. aeruginosa was recorded following the treatment of TiO2-NPs. Additionally, elastases and exoproteases were inhibited by 58.21 and 74.36%, respectively. A similar result was observed against the rhamnolipid production and swimming motility of P. aeruginosa. The effect of TiO2-NPs was also validated against another opportunistic pathogen, S. marcescens, where the production of prodigiosin was reduced by 64.78%. Also, a roughly 75% attenuation of proteolytic activity and more than 50% reduction in swarming motility were found. In the control group, the cell surface hydrophobicity was 77.72%, which decreased to 24.67% with the addition of 64 µg ml-1 TiO2-NPs in culture media. The hydrophobicity index of microorganisms is crucial for their initial attachment and the formation of biofilms. In conclusion, TiO2-NPs demonstrated potential in a multi-target approach against P. aeruginosa and S. marcescens, suggesting their advantages in the prevention and treatment of infections. These nanomaterials could have vital importance in the development of novel antibacterial agents to combat drug-resistant bacteria.

7.
Front Mol Biosci ; 10: 1292509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965379

RESUMEN

Infectious diseases remain among the most pressing concerns for human health. This issue has grown even more complex with the emergence of multidrug-resistant (MDR) bacteria. To address bacterial infections, nanoparticles have emerged as a promising avenue, offering the potential to target bacteria at multiple levels and effectively eliminate them. In this study, silver nanoparticles (AA-AgNPs) were synthesized using the leaf extract of a medicinal plant, Abroma augusta. The synthesis method is straightforward, safe, cost-effective, and environment friendly, utilizing the leaf extract of this Ayurvedic herb. The UV-vis absorbance peak at 424 nm indicated the formation of AA-AgNPs, with the involvement of numerous functional groups in the synthesis and stabilization of the particles. AA-AgNPs exhibited robust antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The MIC values of AA-AgNPs ranged from 8 to 32 µg/mL. Electron microscopic examination of the interaction of AA-AgNPs with the test bacterial pathogens showed a deleterious impact on bacterial morphology, resulting from membrane rupture and leakage of intracellular components. AA-AgNPs also demonstrated a dose-dependent effect in curtailing biofilm formation below inhibitory doses. Overall, this study highlights the potential of AA-AgNPs in the successful inhibition of both the growth and biofilms of MRSA and VRE bacteria. Following studies on toxicity and dose optimization, such AgNPs could be developed into effective medical remedies against infections.

8.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904338

RESUMEN

Antimicrobial resistance poses a significant challenge to public health, especially in developing countries, due to a substantial rise in bacterial resistance. This situation has become so concerning that we are now at risk of losing the effectiveness of antibiotics altogether. Recent research has firmly established that bacteria engage in a process called quorum sensing (QS). QS regulates various functions, including nutrient scavenging, immune response suppression, increased virulence, biofilm formation and mobility. Pseudomonas aeruginosa, an opportunistic bacterial pathogen, plays a significant role in various medical conditions such as chronic wounds, corneal infections, burn wounds and cystic fibrosis. While antibiotics are effective in killing bacteria, only a few antibiotics, particularly those from the ß-lactam group, have been studied for their impact on the quorum sensing of P. aeruginosa. Given the lack of concentrated efforts in this area, we have investigated the role of ß-lactam antibiotics on various potential targets of P. aeruginosa. Based on their toxicological profiles and the average binding energy obtained through molecular docking, azlocillin and moxalactam have emerged as lead antibiotics. The binding energy for the docking of azlocillin and moxalactam with LasA was determined to be -8.2 and -8.6 kcal/mol, respectively. Molecular simulation analysis has confirmed the stable interaction of both these ligands with all three target proteins (LasI, LasA and PqsR) under physiological conditions. The results of this research underscore the effectiveness of azlocillin and moxalactam. These two antibiotics may be repurposed to target the quorum sensing of P. aeruginosa.Communicated by Ramaswamy H. Sarma.

9.
Sci Rep ; 13(1): 15262, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709787

RESUMEN

Sorcin (Sri), a member of penta EF-hand protein family plays a diverse role in maintaining calcium homeostasis, cell cycle and vesicular trafficking. Sri is highly conserved amongst mammals and consists of N-terminal glycine rich domain and C-terminal calcium binding domain that mediates its dimerization and interacts with different compounds. In the present study, with the help of combination of computational and molecular biology techniques, we have identified a novel isoform (Sri-N) in mouse which differs only in the C-terminal domain with that of Sri reported earlier. The novel isoform contains a new last exon that is different from the one present in the reported transcript (Sri). The presence of the novel isoform was further validated in different tissues by RT-PCR and DNA sequencing. The transcript was conceptually translated and subjected to in-silico analysis using different bioinformatics tools. The novel transcript variant encodes for a longer protein isoform without any change in the sub-cellular localization as predicted by PSORT-II online tool. Molecular modelling was performed to compare the structural changes in Sri-N and Sri isoforms. The structural characterization of the novel isoform using MD simulation depicted its overall stability under the physiological conditions. The molecular docking of proteins with various chemotherapeutic drugs revealed that their binding affinity is more for Sri-N as compared to that for the previously reported transcript Sri.


Asunto(s)
Conservadores de la Densidad Ósea , Calcio , Animales , Ratones , Dimerización , Simulación del Acoplamiento Molecular , Isoformas de Proteínas/genética , Mamíferos
10.
J Biomol Struct Dyn ; : 1-14, 2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37394824

RESUMEN

In last two decades, the world has seen an exponential increase in the antimicrobial resistance (AMR), making the issue a serious threat to human health. The mortality caused by AMR is one of the leading causes of human death worldwide. Till the end of the twentieth century, a tremendous success in the discovery of new antibiotics was seen, but in last two decades, there is negligible progress in this direction. The increase in AMR combined with slow progress of antibiotic drug discovery has created an urgent demand to search for newer methods of intervention to combat infectious diseases. One of such approach is to look for biofilm and quorum sensing (QS) inhibitors. Plants are excellent source of wide class compounds that can be harnessed to look for the compounds with such properties. This study proves a broad-spectrum biofilm and QS inhibitory potential of umbelliferone. More than 85% reduction in violacein production Chromobacterium violaceum 12472 was found. All tested virulent traits of Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 were remarkably inhibited that ranged from 56.62% to 86.24%. Umbelliferone also successfully prevented the biofilm of test bacteria at least by 67.68%. Umbelliferone interacted at the active site of many proteins of QS circuit, which led to the mitigation of virulent traits. The stable nature of complexes of umbelliferone with proteins further strengthens in vitro results. After examining the toxicological profile and other drug-like properties, umbelliferone could be potentially developed as new drug to target the infections caused by Gram - ve bacteria.Communicated by Ramaswamy H. Sarma.

11.
J Biomol Struct Dyn ; 41(6): 2189-2201, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35067192

RESUMEN

Multiple drug resistance (MDR) in bacteria has increased globally in recent times. This has reduced the efficacy of antibiotics and increasing the rate of therapeutic failure. Targeting efflux pump by natural and synthetic compounds is one of the strategies to develop an ideal broad-spectrum resistance-modifying agent. Very few inhibitors of AcrB from natural sources have been reported till date. In the current study, 19 phytocompounds were screened for efflux pump inhibitory activity against AcrB protein of E. coli TG1 using molecular docking studies. The molecular dynamics simulation provided stability the protein (AcrB) and its complex with chlorogenic acid under physiological conditions. Moreover, the detailed molecular insights of the binding were also explored. The Lipinski rule of 5 and the drug-likeness prediction was determined using Swiss ADME server, while toxicity prediction was done using admetSAR and PROTOX-II webservers. Chlorogenic acid showed the highest binding affinity (-9.1 kcal mol-1) with AcrB protein among all screened phytocompounds. Consequently, all the phytocompounds that accede to Lipinski's rule, demonstrated a high LD50 value indicating that they are non-toxic except the phytocompound reserpine. Chlorogenic acid and capsaicin are filtered out based on the synergy with tetracycline having FIC index of 0.25 and 0.28. The percentage increase of EtBr fluorescence by chlorogenic acid was 36.6% followed by piperine (24.2%). Chlorogenic acid may be a promising efflux pump inhibitor that might be employed in combination therapy with tetracycline against E. coli, based on the above relationship between in silico screening and in vitro positive efflux inhibitory activity.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Escherichia coli/química , Ácido Clorogénico/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Antibacterianos/química , Tetraciclinas
12.
Heliyon ; 8(10): e11113, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36311355

RESUMEN

Multidrug resistance (MDR) in pathogenic bacteria have become a major clinical issue. Quorum sensing regulated bacterial virulence is a promising key drug target for MDR infections. Therefore, the aim of the present work was to assess the anti-quorum sensing properties of selected medicinal plants against bacterial pathogens as well in silico interaction of selected bioactive phytocompounds with QS and biofilm-associated proteins. Based on the ethnopharmacological usage, 18 plants were selected using methanolic extract against Chromobacterium violaceum 12472. The most active extract (Acacia nilotica) was fractionated in increasing polarity solvents (n-hexane, chloroform and ethyl acetate) and tested for anti-QS activity. The most active fraction i.e. ethyl acetate fraction was evaluated for their activity at sub-MICs against QS-associated virulence factors of Pseudomonas aeruginosa PAO1 and Serretia marcescens MTCC 97. Microtiter plate assay and light microscopy was used to determine inhibition of biofilm. Phytochemicals of the ethyl acetate fraction were analysed by GC/MS and LC/MS. Phytocompounds were docked with QS (LasI, LasR, CviR, and rhlR) and biofilm proteins (PilY1 and PilT) using Auto dock vina. The MIC of ethyl acetate fraction determined was 250, 500, and 1000 µg/ml against C. violaceum 12472, P. aeruginosa PAO1, and S. marcescens MTCC97 respectively. At sub-MICs QS regulated virulence factors production and inhibited biofilms broadly (more than 50 percent). GC/MS detected the major bioactive compound benzoic acid, 3,4,5-trihydroxy-, methyl ester (61.24 %) and LC-MS detected Retronecine for the first time in A. nilotica pods. In silico, dehydroabietic acid occupied the same cavity as its antagonist in the CviR ligand binding domain. Also, betulin and epicatechin gallate interact with biofilm proteins PilY1 and PilT, preventing biofilm formation. The findings suggest that the phytochemicals of A. nilotica pod could be exploited as an anti-QS agent against Gram-negative pathogens. To discover therapeutic efficacy of standardised bioactive extract/phytochemicals must be tested under in vivo condition.

13.
Molecules ; 27(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144527

RESUMEN

Globally, cancer is the second leading cause of mortality and morbidity. The growth and development of cancer are extremely complex. It is caused by a variety of pathways and involves various types of enzymes. Pyruvate kinase M2 (PKM2) is an isoform of pyruvate kinase, that catalyses the last steps of glycolysis to produce energy. PKM2 is relatively more expressed in tumour cells where it tends to exist in a dimer form. Various medicinal plants are available that contain a variety of micronutrients to combat against different cancers. The phytocompounds of the olive tree (Olea europaea) leaves play an important role in inhibiting the proliferation of several cancers. In this study, the phytocompounds of olive leaf extract (OLE) were studied using various in silico tools, such as pkCSM software to predict ADMET properties and PASS Online software to predict anticancer activity. However, the molecular docking study provided the binding energies and inhibition constant and confirmed the interaction between PKM2 and the ligands. The dynamic behaviour, conformational changes, and stability between PKM2 and the top three hit compounds (Verbascoside (Ver), Rutin (Rut), and Luteolin_7_O_glucoside (Lut)) are studied by MD simulations.


Asunto(s)
Antineoplásicos , Neoplasias , Olea , Antineoplásicos/farmacología , Glucósidos/farmacología , Humanos , Luteolina , Micronutrientes , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Olea/química , Extractos Vegetales , Piruvato Quinasa/metabolismo , Ácido Pirúvico , Rutina
14.
J King Saud Univ Sci ; 34(7): 102226, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35875823

RESUMEN

COVID-19 pandemic caused by very severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) agent is an ongoing major global health concern. The disease has caused more than 452 million affected cases and more than 6 million death worldwide. Hence, there is an urgency to search for possible medications and drug treatments. There are no approved drugs available to treat COVID-19 yet, although several vaccine candidates are already available and some of them are listed for emergency use by the world health organization (WHO). Identifying a potential drug candidate may make a significant contribution to control the expansion of COVID-19. The in vitro biological activity of asymmetric disulfides against coronavirus through the inhibition of SARS-CoV-2 main protease (Mpro) protein was reported. Due to the lack of convincing evidence those asymmetric disulfides have favorable pharmacological properties for the clinical treatment of Coronavirus, in silico evaluation should be performed to assess the potential of these compounds to inhibit the SARS-CoV-2 Mpro. In this context, we report herein the molecular docking for a series of 40 unsymmetrical aromatic disulfides as SARS-CoV-2 Mpro inhibitor. The optimal binding features of disulfides within the binding pocket of SARS-CoV-2 endoribonuclease protein (Protein Data Bank [PDB]: 6LU7) was described. Studied compounds were ranked for potential effectiveness, and those have shown high molecular docking scores were proposed as novel drug candidates against SARS-CoV-2. Moreover, the outcomes of drug similarity and ADME (Absorption, Distribution, Metabolism, and Excretion) analyses have may have the effectiveness of acting as medicines, and would be of interest as promising starting point for designing compounds against SARS-CoV-2. Finally, the stability of these three compounds in the complex with Mpro was validated through molecular dynamics (MD) simulation, in which they displayed stable trajectory and molecular properties with a consistent interaction profile.

15.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807227

RESUMEN

Both members of the aldo-keto reductases (AKRs) family, AKR1B1 and AKR1B10, are over-expressed in various type of cancer, making them potential targets for inflammation-mediated cancers such as colon, lung, breast, and prostate cancers. This is the first comprehensive study which focused on the identification of phenylcarbamoylazinane-1, 2,4-triazole amides (7a−o) as the inhibitors of aldo-keto reductases (AKR1B1, AKR1B10) via detailed computational analysis. Firstly, the stability and reactivity of compounds were determined by using the Guassian09 programme in which the density functional theory (DFT) calculations were performed by using the B3LYP/SVP level. Among all the derivatives, the 7d, 7e, 7f, 7h, 7j, 7k, and 7m were found chemically reactive. Then the binding interactions of the optimized compounds within the active pocket of the selected targets were carried out by using molecular docking software: AutoDock tools and Molecular operation environment (MOE) software, and during analysis, the Autodock (academic software) results were found to be reproducible, suggesting this software is best over the MOE (commercial software). The results were found in correlation with the DFT results, suggesting 7d as the best inhibitor of AKR1B1 with the energy value of −49.40 kJ/mol and 7f as the best inhibitor of AKR1B10 with the energy value of −52.84 kJ/mol. The other potent compounds also showed comparable binding energies. The best inhibitors of both targets were validated by the molecular dynamics simulation studies where the root mean square value of <2 along with the other physicochemical properties, hydrogen bond interactions, and binding energies were observed. Furthermore, the anticancer potential of the potent compounds was confirmed by cell viability (MTT) assay. The studied compounds fall into the category of drug-like properties and also supported by physicochemical and pharmacological ADMET properties. It can be suggested that the further synthesis of derivatives of 7d and 7f may lead to the potential drug-like molecules for the treatment of colon cancer associated with the aberrant expression of either AKR1B1 or AKR1B10 and other associated malignancies.


Asunto(s)
Aldo-Ceto Reductasas , Amidas , Neoplasias del Colon , Triazoles , Aldo-Ceto Reductasas/antagonistas & inhibidores , Aldo-Ceto Reductasas/metabolismo , Amidas/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/enzimología , Humanos , Simulación del Acoplamiento Molecular , Triazoles/farmacología
16.
Struct Chem ; 33(5): 1799-1813, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505923

RESUMEN

In silico studies performed on the metabolites of four Cameroonian medicinal plants with a view to propose potential molecules to fight against COVID-19 were carried out. At first, molecular docking was performed for a set of 84 selected phytochemicals with SARS-CoV-2 main protease (PDB ID: 6lu7) protein. It was further followed by assessing the pharmacokinetics and pharmacological abilities of 15 compounds, which showed low binding energy values. As the screening criteria for their ADMET properties were performed, only two compounds have shown suitable pharmacological properties for human administration which were shortlisted. Furthermore, the stability of binding of these compounds was assessed by performing molecular dynamics (MD) simulations. Based on further analysis through molecular dynamics simulations and reactivity studies, it was concluded that only the Pycnanthuquinone C (17) and the Pycnanthuquinone A (18) extracted from the Pycnanthus angolensis could be considered as candidate inhibitors for targeted protein. Indeed, we expect that these compounds could show excellent in vitro and in vivo activity against SARS-CoV-2. Supplementary information: The online version contains supplementary material available at 10.1007/s11224-022-01939-7.

17.
Sci Rep ; 12(1): 6404, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35436996

RESUMEN

NIMA related Kinases (NEK7) plays an important role in spindle assembly and mitotic division of the cell. Over expression of NEK7 leads to the progression of different cancers and associated malignancies. It is becoming the next wave of targets for the development of selective and potent anti-cancerous agents. The current study is the first comprehensive computational approach to identify potent inhibitors of NEK7 protein. For this purpose, previously identified anti-inflammatory compound i.e., Phenylcarbamoylpiperidine-1,2,4-triazole amide derivatives by our own group were selected for their anti-cancer potential via detailed Computational studies. Initially, the density functional theory (DFT) calculations were carried out using Gaussian 09 software which provided information about the compounds' stability and reactivity. Furthermore, Autodock suite and Molecular Operating Environment (MOE) software's were used to dock the ligand database into the active pocket of the NEK7 protein. Both software performances were compared in terms of sampling power and scoring power. During the analysis, Autodock results were found to be more reproducible, implying that this software outperforms the MOE. The majority of the compounds, including M7, and M12 showed excellent binding energies and formed stable protein-ligand complexes with docking scores of - 29.66 kJ/mol and - 31.38 kJ/mol, respectively. The results were validated by molecular dynamics simulation studies where the stability and conformational transformation of the best protein-ligand complex were justified on the basis of RMSD and RMSF trajectory analysis. The drug likeness properties and toxicity profile of all compounds were determined by ADMETlab 2.0. Furthermore, the anticancer potential of the potent compounds were confirmed by cell viability (MTT) assay. This study suggested that selected compounds can be further investigated at molecular level and evaluated for cancer treatment and associated malignancies.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Ligandos , Simulación del Acoplamiento Molecular , Quinasas Relacionadas con NIMA , Unión Proteica
18.
Int J Biol Macromol ; 207: 644-655, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278515

RESUMEN

The thalidomide-DNA interactions have been investigated in detail by numerous biophysical techniques such as UV-vis, dye displacement assay, viscosity, cyclic voltammetry, circular dichroism, molecular docking, molecular dynamic simulation, FT-IR and 1H NMR spectroscopy. CD spectroscopy, thermal denaturation and viscosity measurement explained that thalidomide is groove binder. Molecular docking analysis highlighted that thalidomide binds trough minor groove of calf thymus DNA which also confirmed from dye displacement experiment. To our knowledge, this is the first instance thalidomide was shown to binds with calf thymus DNA. Molecular dynamic simulation indicated that the thalidomide-DNA system was stabilized by electrostatic attraction as the main interaction and mode of binding is minor groove. Our study provides a better understanding to the DNA-thalidomide binding affinity and it mechanism. Overall, all these in formations can be used for further understanding the pharmacological effects of thalidomide.


Asunto(s)
ADN , Talidomida , Dicroismo Circular , ADN/química , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Talidomida/farmacología , Termodinámica
19.
J Mol Model ; 28(4): 106, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35352175

RESUMEN

In the present study, a quantitative relationship between the biological inhibitory activity of alpha-amylase and molecular structures of novel benzimidazole derivatives is analyzed in silico. The best QSAR model screened via MLR technique indicated that the exact mass, topological diameter and numerical rotational bonding structural properties of benzimidazole derivatives highly affect the bioactivity of these compounds against α-amylase. Based on the structural properties identified via linear QSAR model favorable for improving pIC50 of benzimidazole derivatives, fourteen new molecules bearing benzimidazole radicals were designed and their biological inhibitory activity against α-amylase was improved. QSAR model predictions showed that the designed molecules exhibited a higher potential biological level activity IC50 than acarbose used in positive control (IC50= 1.46 µM). Screening of drug-like properties, pharmacokinetics and toxicity of the proposed molecules led to select three molecules as candidates for use as drug aid to ingest starch and glycogen. As a result, using molecular docking simulations, the docking poses of the three molecules inside the α-amylase receptor pocket (PDB code: 1HNY) were predicted. Also, the most important potential interactions between the active amino acid sites in α-amylase protein pocket and the proposed drug molecules were described. The obtained hypotheses regarding the stability of the proposed molecules inside α-amylase pocket were validated by carrying out molecular dynamic simulations in aqueous background similar to the ones of proteins. The DM results confirmed the optimal stability of the α-amylase backbone with the drug molecules proposed in this computational investigation.


Asunto(s)
Bencimidazoles , alfa-Amilasas , Bencimidazoles/química , Bencimidazoles/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/química
20.
ACS Omega ; 6(29): 18823-18835, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34337222

RESUMEN

Quorum sensing (QS) and biofilm inhibition are recognized as the novel drug targets for the broad-spectrum anti-infective strategy to combat the infections caused by drug-resistant bacterial pathogens. Many compounds from medicinal plants have been found to demonstrate anti-infective activity. However, broad-spectrum anti-QS and antibiofilm efficacy and their mode of action are poorly studied. In this study, the efficacy of coumarin was tested against QS-regulated virulent traits of Gram-negative bacteria. Coumarin inhibited the production of violacein pigment in Chromobacterium violaceum 12472 by 64.21%. Similarly, there was 87.25, 70.05, 76.07, 58.64, 48.94, and 81.20% inhibition of pyocyanin, pyoverdin, and proteolytic activity, lasB elastase activity, swimming motility, and rhamnolipid production, respectively, in Pseudomonas aeruginosa PAO1. All tested virulence factors of Serratia marcescens MTCC 97 were also suppressed by more than 50% at the highest sub-minimum inhibitory concentration. Moreover, the biofilms of bacterial pathogens were also inhibited in a dose-dependent manner. Molecular docking and molecular dynamics (MD) simulation gave insights into the possible mode of action. The binding energy obtained by docking studies ranged from -5.7 to -8.1 kcal mol-1. Coumarin was found to be docked in the active site of acylhomoserine lactone (AHL) synthases and regulatory proteins of QS. MD simulations further supported the in vitro studies where coumarin formed a stable complex with the tested proteins. The secondary structure of all proteins showed a negligible change in the presence of coumarin. Computational studies showed that the possible mechanisms of anti-QS activity were the inhibition of AHL synthesis, antagonization of QS-regulatory proteins, and blocking of the receptor proteins. The findings of this study clearly highlight the potency of coumarin against the virulence factors of Gram-negative bacterial pathogens that may be developed as an effective inhibitor of QS and biofilms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA