Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Prenat Diagn ; 44(1): 35-48, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38165124

RESUMEN

OBJECTIVE: To describe the MR features enabling prenatal diagnosis of pontocerebellar hypoplasia (PCH). METHOD: This was a retrospective single monocentre study. The inclusion criteria were decreased cerebellar biometry on dedicated neurosonography and available fetal Magnetic Resonance Imaging (MRI) with PCH diagnosis later confirmed either genetically or clinically on post-natal MRI or by autopsy. The exclusion criteria were non-available MRI and sonographic features suggestive of a known genetic or other pathologic diagnosis. The collected data were biometric or morphological imaging parameters, clinical outcome, termination of pregnancy (TOP), pathological findings and genetic analysis (karyotyping, chromosomal microarray, DNA sequencing targeted or exome). PCH was classified as classic, non-classic, chromosomal, or unknown type. RESULTS: Forty-two fetuses were diagnosed with PCH, of which 27 were referred for decreased transverse cerebellar diameter at screening ultrasound. Neurosonography and fetal MRI were performed at a mean gestational age of 29 + 4 and 31 + 0 weeks, respectively. Termination of pregnancy occurred. Pregnancy was terminated in 24 cases. Neuropathological examination confirmed the diagnosis in 24 cases and genetic testing identified abnormalities in 29 cases (28 families, 14 chromosomal anomaly). Classic PCH is associated with pontine atrophy and small MR measurements decreasing with advancing gestation. CONCLUSION: This is the first large series of prenatally diagnosed PCHs. Our study shows the essential contribution of fetal MRI to the prenatal diagnosis of PCH. Classic PCHs are particularly severe and are associated with certain MR features.


Asunto(s)
Enfermedades Cerebelosas , Imagen por Resonancia Magnética , Diagnóstico Prenatal , Embarazo , Femenino , Humanos , Lactante , Estudios Retrospectivos , Estudios de Seguimiento , Diagnóstico Prenatal/métodos , Imagen por Resonancia Magnética/métodos , Ultrasonografía Prenatal/métodos
2.
Front Physiol ; 14: 1130175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228816

RESUMEN

Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.

3.
Proc Natl Acad Sci U S A ; 120(9): e2102569120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802443

RESUMEN

In the human genome, about 750 genes contain one intron excised by the minor spliceosome. This spliceosome comprises its own set of snRNAs, among which U4atac. Its noncoding gene, RNU4ATAC, has been found mutated in Taybi-Linder (TALS/microcephalic osteodysplastic primordial dwarfism type 1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes. These rare developmental disorders, whose physiopathological mechanisms remain unsolved, associate ante- and post-natal growth retardation, microcephaly, skeletal dysplasia, intellectual disability, retinal dystrophy, and immunodeficiency. Here, we report bi-allelic RNU4ATAC mutations in five patients presenting with traits suggestive of the Joubert syndrome (JBTS), a well-characterized ciliopathy. These patients also present with traits typical of TALS/RFMN/LWS, thus widening the clinical spectrum of RNU4ATAC-associated disorders and indicating ciliary dysfunction as a mechanism downstream of minor splicing defects. Intriguingly, all five patients carry the n.16G>A mutation, in the Stem II domain, either at the homozygous or compound heterozygous state. A gene ontology term enrichment analysis on minor intron-containing genes reveals that the cilium assembly process is over-represented, with no less than 86 cilium-related genes containing at least one minor intron, among which there are 23 ciliopathy-related genes. The link between RNU4ATAC mutations and ciliopathy traits is supported by alterations of primary cilium function in TALS and JBTS-like patient fibroblasts, as well as by u4atac zebrafish model, which exhibits ciliopathy-related phenotypes and ciliary defects. These phenotypes could be rescued by WT but not by pathogenic variants-carrying human U4atac. Altogether, our data indicate that alteration of cilium biogenesis is part of the physiopathological mechanisms of TALS/RFMN/LWS, secondarily to defects of minor intron splicing.


Asunto(s)
Ciliopatías , Empalmosomas , Femenino , Animales , Humanos , Empalmosomas/genética , ARN Nuclear Pequeño/genética , Pez Cebra/genética , Retardo del Crecimiento Fetal/genética , Mutación , Ciliopatías/genética
4.
Elife ; 122023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36648066

RESUMEN

TRPM3 is a temperature- and neurosteroid-sensitive plasma membrane cation channel expressed in a variety of neuronal and non-neuronal cells. Recently, rare de novo variants in TRPM3 were identified in individuals with developmental and epileptic encephalopathy, but the link between TRPM3 activity and neuronal disease remains poorly understood. We previously reported that two disease-associated variants in TRPM3 lead to a gain of channel function . Here, we report a further 10 patients carrying one of seven additional heterozygous TRPM3 missense variants. These patients present with a broad spectrum of neurodevelopmental symptoms, including global developmental delay, intellectual disability, epilepsy, musculo-skeletal anomalies, and altered pain perception. We describe a cerebellar phenotype with ataxia or severe hypotonia, nystagmus, and cerebellar atrophy in more than half of the patients. All disease-associated variants exhibited a robust gain-of-function phenotype, characterized by increased basal activity leading to cellular calcium overload and by enhanced responses to the neurosteroid ligand pregnenolone sulfate when co-expressed with wild-type TRPM3 in mammalian cells. The antiseizure medication primidone, a known TRPM3 antagonist, reduced the increased basal activity of all mutant channels. These findings establish gain-of-function of TRPM3 as the cause of a spectrum of autosomal dominant neurodevelopmental disorders with frequent cerebellar involvement in humans and provide support for the evaluation of TRPM3 antagonists as a potential therapy.


Asunto(s)
Epilepsia , Trastornos del Neurodesarrollo , Neuroesteroides , Canales Catiónicos TRPM , Animales , Humanos , Mutación con Ganancia de Función , Trastornos del Neurodesarrollo/genética , Epilepsia/genética , Canales Iónicos/genética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Mamíferos/metabolismo
5.
Genet Med ; 25(2): 100323, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36401616

RESUMEN

PURPOSE: Pathogenic variants in genes encoding ubiquitin E3 ligases are known to cause neurodevelopmental syndromes. Additional neurodevelopmental disorders associated with the other genes encoding E3 ligases are yet to be identified. METHODS: Chromosomal analysis and exome sequencing were used to identify the genetic causes in 10 patients from 7 unrelated families with syndromic neurodevelopmental, seizure, and movement disorders and neurobehavioral phenotypes. RESULTS: In total, 4 patients were found to have 3 different homozygous loss-of-function (LoF) variants, and 3 patients had 4 compound heterozygous missense variants in the candidate E3 ligase gene, HECTD4, that were rare, absent from controls as homozygous, and predicted to be deleterious in silico. In 3 patients from 2 families with Angelman-like syndrome, paralog-directed candidate gene approach detected 2 LoF variants in the other candidate E3 ligase gene, UBE3C, a paralog of the Angelman syndrome E3 ligase gene, UBE3A. The RNA studies in 4 patients with LoF variants in HECTD4 and UBE3C provided evidence for the LoF effect. CONCLUSION: HECTD4 and UBE3C are novel biallelic rare disease genes, expand the association of the other HECT E3 ligase group with neurodevelopmental syndromes, and could explain some of the missing heritability in patients with a suggestive clinical diagnosis of Angelman syndrome.


Asunto(s)
Síndrome de Angelman , Trastornos del Neurodesarrollo , Humanos , Síndrome de Angelman/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Trastornos del Neurodesarrollo/genética , Fenotipo
6.
J Med Genet ; 60(6): 578-586, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36319078

RESUMEN

PURPOSE: In this study, we describe the phenotype and genotype of the largest cohort of patients with Joubert syndrome (JS) carrying pathogenic variants on one of the most frequent causative genes, CC2D2A. METHODS: We selected 53 patients with pathogenic variants on CC2D2A, compiled and analysed their clinical, neuroimaging and genetic information and compared it to previous literature. RESULTS: Developmental delay (motor and language) was nearly constant but patients had normal intellectual efficiency in 74% of cases (20/27 patients) and 68% followed mainstream schooling despite learning difficulties. Epilepsy was found in only 13% of cases. Only three patients had kidney cysts, only three had genuine retinal dystrophy and no subject had liver fibrosis or polydactyly. Brain MRIs showed typical signs of JS with rare additional features. Genotype-phenotype correlation findings demonstrate a homozygous truncating variant p.Arg950* linked to a more severe phenotype. CONCLUSION: This study contradicts previous literature stating an association between CC2D2A-related JS and ventriculomegaly. Our study implies that CC2D2A-related JS is linked to positive neurodevelopmental outcome and low rate of other organ defects except for homozygous pathogenic variant p.Arg950*. This information will help modulate patient follow-up and provide families with accurate genetic counselling.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Humanos , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Retina/diagnóstico por imagen , Retina/patología , Proteínas del Citoesqueleto
7.
J Clin Med ; 11(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893425

RESUMEN

Pontocerebellar hypoplasia (PCH) is an autosomal recessive, neurodegenerative disorder with multiple subtypes leading to severe neurodevelopmental disabilities. PCH type 1 D is linked to alterations in the EXOSC9 gene. EXOSC9 is a component of the RNA exosome, an evolutionarily conserved ribonuclease complex essential for RNA degradation and processing. The clinical phenotype is characterized by cerebellar and pontine hypoplasia associated with motor neuronopathy. To date, nine patients have been reported in the literature with PCH1D. We report the case of an infant with PCH type 1D due to two variants in the EXOCS9 gene (NM_001034194.1: c.41T>C-p.Leu14Pro) and a novel variant (c.643C>T-p.Arg212*). This report thoroughly reviews the literature PCH1D and highlights the crucial role of the exosome in cellular homeostasis.

8.
Brain ; 145(10): 3383-3390, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35737950

RESUMEN

The endocannabinoid system is a highly conserved and ubiquitous signalling pathway with broad-ranging effects. Despite critical pathway functions, gene variants have not previously been conclusively linked to human disease. We identified nine children from eight families with heterozygous, de novo truncating variants in the last exon of DAGLA with a neuro-ocular phenotype characterized by developmental delay, ataxia and complex oculomotor abnormality. All children displayed paroxysms of nystagmus or eye deviation accompanied by compensatory head posture and worsened incoordination most frequently after waking. RNA sequencing showed clear expression of the truncated transcript and no differences were found between mutant and wild-type DAGLA activity. Immunofluorescence staining of patient-derived fibroblasts and HEK cells expressing the mutant protein showed distinct perinuclear aggregation not detected in control samples. This report establishes truncating variants in the last DAGLA exon as the cause of a unique paediatric syndrome. Because enzymatic activity was preserved, the observed mislocalization of the truncated protein may account for the observed phenotype. Potential mechanisms include DAGLA haploinsufficiency at the plasma membrane or dominant negative effect. To our knowledge, this is the first report directly linking an endocannabinoid system component with human genetic disease and sets the stage for potential future therapeutic avenues.


Asunto(s)
Endocannabinoides , Enfermedades del Sistema Nervioso , Humanos , Niño , Fenotipo , Enfermedades del Sistema Nervioso/genética , Heterocigoto , Síndrome , Proteínas Mutantes
9.
Ann Clin Transl Neurol ; 8(10): 1986-1990, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34415117

RESUMEN

Originally described as a risk factor for autism, CHD8 loss-of-function variants have recently been associated with a wider spectrum of neurodevelopmental abnormalities. We further expand the CHD8-related phenotype with the description of two unrelated patients who presented with childhood-onset progressive dystonia. Whole-exome sequencing conducted in two independent laboratories revealed a CHD8 nonsense variant in one patient and a frameshift variant in the second. The patients had strongly overlapping phenotypes characterized by generalized dystonia with mild-to-moderate neurodevelopmental comorbidity. Deep brain stimulation led to clinical improvement in both cases. We suggest that CHD8 should be added to the growing list of neurodevelopmental disorder-associated genes whose mutations can also result in dystonia-dominant phenotypes.


Asunto(s)
Proteínas de Unión al ADN/genética , Trastornos Distónicos/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Edad de Inicio , Estimulación Encefálica Profunda , Progresión de la Enfermedad , Trastornos Distónicos/fisiopatología , Trastornos Distónicos/terapia , Femenino , Humanos , Persona de Mediana Edad , Trastornos del Neurodesarrollo/fisiopatología
10.
Ann Neurol ; 89(4): 828-833, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33443317

RESUMEN

The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021;89:828-833.


Asunto(s)
Cerebelo/anomalías , Discapacidades del Desarrollo/genética , Distonía/genética , Complejo Mediador/genética , Malformaciones del Sistema Nervioso/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Catarata/genética , Niño , Preescolar , Epilepsia/genética , Variación Genética , Humanos , Lactante , Fenotipo , Secuenciación del Exoma
12.
Ann Neurol ; 88(2): 332-347, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32403198

RESUMEN

OBJECTIVE: A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition. METHODS: We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay, and the generation of a Y259C knock-in mouse were done. RESULTS: A total of 11 patients in 6 families carrying 5 different biallelic pathogenic variants in specific domains of GGPS1 were identified. GGPS1 encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl pyrophosphate, the lipid precursor of geranylgeranylated proteins including small guanosine triphosphatases. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient-derived myogenic cells, and a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality. INTERPRETATION: The identification of specific GGPS1 mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation. ANN NEUROL 2020;88:332-347.


Asunto(s)
Dimetilaliltranstransferasa/genética , Farnesiltransferasa/genética , Geraniltranstransferasa/genética , Pérdida Auditiva/genética , Distrofias Musculares/genética , Mutación/genética , Insuficiencia Ovárica Primaria/genética , Adolescente , Adulto , Animales , Femenino , Técnicas de Sustitución del Gen/métodos , Pérdida Auditiva/diagnóstico por imagen , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Distrofias Musculares/diagnóstico por imagen , Linaje , Insuficiencia Ovárica Primaria/diagnóstico por imagen , Estructura Secundaria de Proteína , Análisis de Secuencia de ADN/métodos , Secuenciación del Exoma/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA