Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 929: 172498, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657805

RESUMEN

The drugs and personal care products in water sources are potential threats to the ecological environment and drinking water quality. In recent years, the presence of PPCPs has been detected in multiple drinking water sources in China. PPCPs are usually stable and resistant to degradation in aquatic environments. During chlorination, chloramination, and ozonation disinfection processes, PPCPs can act as precursor substances to generate N-nitrosodimethylamine (NDMA) which is the most widely detected nitrosamine byproduct in drinking water. This review provides a comprehensive overview of the impact of PPCPs in China's water environment on the generation of NDMA during disinfection processes to better understand the correlation between PPCPs and NDMA generation. Chloramine is the most likely to form NDMA with different disinfection methods, so chloramine disinfection may be the main pathway for NDMA generation. Activated carbon adsorption and UV photolysis are widely used in the removal of NDMA and its precursor PPCPs, and biological treatment is found to be a low-cost and high removal rate method for controlling the generation of NDMA. However, there are still certain regional limitations in the investigation and research on PPCPs, and other nitrosamine by-products such as NMEA, NDEA and NDBA should also be studied to investigate the formation mechanism and removal methods.


Asunto(s)
Dimetilnitrosamina , Desinfección , Contaminantes Químicos del Agua , Purificación del Agua , China , Desinfección/métodos , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis , Dimetilnitrosamina/análisis , Agua Potable/química , Desinfectantes/análisis
2.
Materials (Basel) ; 15(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269142

RESUMEN

Sludge water (SW) with abundant sulfate ions (SO42-) was utilized in this work to replace freshwater (FW) to prepare green high performance concrete (GHPC). A comprehensive investigation was conducted to evaluate the early-age performance of GHPC specimen mixed with SW incorporation (GHPC-SW). High temperature steam curing (HTS) has been presented to prepare GHPC-SW specimens. The compressive strength of the GHPC-SW specimen cured by HTS curing for 2 days is 85.2 MPa, which is 34% higher than the compressive strength of the GHPC-SW specimen cured by 3 days standard curing as the reference. The mechanical property results reveal that the incorporation of SW makes no harmful effects on the strength formation of HPC specimens, compared with FW added specimens under the same curing methods. Moreover, XRD and TG analyses indicate that HTS curing can effectively improve the hydration degree of GHPC-SW specimens. MIP analysis has been conducted and the specimens cured by HTS curing exhibit a more refined pore structure with fewer harmful pores. This work lays a solid foundation for the utilization of SW in the concrete construction industry, which is resource saving and environmentally friendly.

3.
Chemosphere ; 275: 129997, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33662733

RESUMEN

Porous media are widely adopted as immobilization sorbents in environmental engineering. The microscale difference in pore structure formation causes significant deflection in a vast landscape. Computational fluid dynamics (CFD) offers a comparative approach to evaluate the individual influence from pore structure formation with strictly controlled surface and volume properties. This paper presents a comprehensive comparison between the performance of cylindrical media and spherical-media in heavy metal immobilization. Digital testing was performed to measure the surface area, specific surface area, density and porosity. Image-based input technique was developed to reconstruct the cylindrical media. It was found that although the surface area, specific surface area and porosity were the same, the spherical media still had an accelerated immobilization rate. Results further showed that the spherical media in floatation arrangement had an immobilization rate of 16% higher than the cylindrical media with the same surface properties. Non-floatation arrangement of the spherical media caused a reduction in immobilization capacity up to 32.8% lower than the cylindrical media. The cylindrical media demonstrated an advantage of being structurally stable under high porosity, the latter of which resulted in an increased immobilization capacity compared with the spherical-media. The results suggest that the cylindrical bio-microstructure is desirable for heavy metal immobilization in a non-flotational environment. The computational approach provides a digital solution to evaluate the immobilization in 3D architected media. The proposed testing methods are feasible for both experimentally obtained images and structures from algorithm-generation.


Asunto(s)
Hidrodinámica , Metales Pesados , Porosidad , Propiedades de Superficie
4.
Powder Technol ; 390: 174-181, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36313254

RESUMEN

Computational analysis of virus dynamics provides a non-contact environment for the study of the vital object. Cluster modelling is an essential step to investigate the properties of a group of viruses, and an automatic approach is required for massive 3D data processing. The morphological complexity of individual virus limits the application of smooth function algorithms with a regular-shaped assumption. This paper proposed a voxel-based redistribution approach to generate the virus cluster with COVID-19 input automatically. Representative elementary volume analysis was performed to address the statistical influence from the digital sample size. Coordination number analysis and surface density measurement were conducted with COVID-19 input and spherical input for comparison. The proposed approach is in natural compatibility with the lattice Boltzmann method for fluid dynamics analysis. A virtual permeation simulation was performed with the COVID-19 cluster and spherical cluster to demonstrate the necessity to include spike protein structure in the cluster modelling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA