Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 922: 171128, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38395168

RESUMEN

This study comprehensively investigated the impact of dust storms (DSs) on downstream cities, by selecting representative DS events. In this paper, we discussed the characteristics of meteorological conditions, air pollutants, PM2.5 components, and their influence on sulfate formation mechanisms. During DSs, strong winds, reaching speeds of up to 10 m/s, led to significant increases in PM10 and PM2.5, with maximum concentrations of 2684.5 and 429 µg/m3, respectively. Primary gaseous pollutants experienced substantial reductions, with decline rates of 48.1, 34.9, 36.8, and 9.0 % for SO2, NO2, NH3, and CO, respectively. Despite a notable increase in PM2.5 concentrations, only 7.6 % of the total mass of PM2.5 was attributed to ionic and carbonaceous components, a much lower value than observed before the DSs (77.3 %). Concentrations of Fe, Ti, and Mn exhibited increases by factors of 6.5-14.1, 10.4-17.0, and 1.6-4.7, respectively. In contrast to the significant decrease of >76.2 % in nitrogen oxidation ratio (NOR), sulfur oxidation ratio (SOR) remained at a relatively high level, displaying a strong positive correlation with high concentrations of Fe, Mn, and Ti. Quantitative analysis revealed an average increase of 0.187 and 0.045 µg/m3 in sulfate from natural sources and heterogeneous generation, respectively. The heterogeneous reaction on mineral dust was closely linked to atmospheric humidity, radiation intensity, the form of metal existence, and concentrations of it. High concentrations of titanium dioxide and iron­manganese oxides in mineral dust promoted heterogeneous oxidation of SO2 through photocatalysis during the daytime and metal ion catalysis during the nighttime. This study establishes that the metal components in mineral dust promote heterogeneous sulfate formation, quantifies the yield of sulfate generated as a result, and provides possible mechanisms for heterogeneous sulfate formation.

2.
Waste Manag ; 175: 225-234, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218093

RESUMEN

The arbitrary disposal of used brake pads from motor vehicles has resulted in severe heavy metal pollution and resource wastage, highlighting the urgent need to explore the significant untapped potential of these discarded materials. In this study, The in-situ growth of highly dispersed Fe2O3 nanocrystals was achieved by simple oxidation annealing of brake pad debris(BPD). Interestingly, Cu remained unoxidized and acted as a "valence state transformation bridge of Fe2O3" to construct the "triple Fe-C-Cu sites". The Fenton degradation experiment of pollutants was conducted under constant temperature conditions at 40 °C, a stirring rate of 1300 rpm, a pH value of 3, a catalyst dosage of 0.5 g/L, pollutant dosage ranging from 50 to 400 mg/L, and H2O2 dosage of 0.25 g/L. Experimental results showed that BPD treated at 300 °C for 2 h exhibited optimal Fenton-like oxidation activity, achieving rapid degradation of over 90 % of refractory antibiotics, such as tetracycline and ciprofloxacin, in organic wastewater within 10 min. This remarkable performance was mainly attributed to the synergistic effect of "Fe-C-Cu triple sites", where the electron-donating role of C in the Fe-C and Cu-C interfaces facilitated the conversion of the Fe(III) to Fe(II) and Cu(II) to Cu(I). In addition, the ability of Cu2+ to accept electrons at the Fe-Cu interface promoted the transition from Fe (II) to Fe (III). This "balance of electron gain and loss" accelerated the interfacial electron transfer and the recycle of dual Fenton sites, Fe(II)/Fe(III) and Cu(I)/Cu(II), to generate more ·OH from H2O2. Therefore, this strategy of functionalizing BPD as Fenton-like catalysts without the addition of external Fe provides intriguing prospects for understanding the construction of Fe-based Fenton catalysts and resource utilization of Fe-containing solid waste materials.


Asunto(s)
Contaminantes Ambientales , Hierro , Hierro/química , Peróxido de Hidrógeno/química , Automóviles , Oxidación-Reducción , Compuestos Férricos/química , Compuestos Ferrosos , Catálisis
3.
J Colloid Interface Sci ; 498: 105-111, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28319838

RESUMEN

We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO2. Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA