Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 193: 105456, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37248022

RESUMEN

Clarireedia spp. is a destructive phytopathogenic fungus that causes turf dollar spot of bent-grass, leading to widespread lawn death. In this study, we explored the antifungal capability of 6-pentyl-2H-pyran-2-one (6PP), a natural metabolite volatilized by microorganisms, which plays an important role in the biological control of turfgrass dollar spot. However, the mechanisms by which 6PP inhibits Clarireedia jacksonii remain unknown. In the present study, C. jacksonii mycelial growth was inhibited by the 6PP treatment and the 6PP treatment damaged cell membrane integrity, causing an increase in relative conduc-tivity. Furthermore, physiological and biochemistry assay showed that 6PP treatment can enhance reactive oxygen species (ROS) levels, malondialdehyde (MDA) content obviously increased with 6PP exposure, increased alchohol dehydrogenase (ADH) and depleted acetalde-hyde dehydrogenase (ALDH), and activated the activities of many antioxidant enzymes in C. jacksonii. Gen Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that some genes in C. jacksonii after 6PP treatment related to integrity of the cell wall and membrane, and oxidative stress were significantly downregulated. It is worth mentioning that the fatty acid degradation pathway is significantly upregulated, with an increase in ATP content and ATP synthase activity, which may promote fungal cell apoptosis. Moreover, we found that the expression of ABC transporters, and glutathione metabolism encoding genes were increased to respond to external stimuli. Taken together, these findings revealed the potential antifungal mechanism of 6PP against Clarireedia spp., which also provides a theoretical basis for the commercial utilization of 6PP as a green pesticide in the future.


Asunto(s)
Antifúngicos , Perfilación de la Expresión Génica , Antifúngicos/farmacología , Oxidorreductasas , Adenosina Trifosfato , Transcriptoma
2.
Front Plant Sci ; 13: 879331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668812

RESUMEN

Membrane lipid reprogramming is one of the most important adaptive strategies in plant species under unfavorable environmental circumstances. Therefore, the present experiment was conducted to elucidate the effect of diethyl aminoethyl hexanoate (DA-6), a novel synthetic plant growth regulator, on oxidative damage, photosynthetic performance, changes in lipidomic profile, and unsaturation index of lipids in two white clover (Trifolium repens) cultivars (drought-sensitive "Ladino" and drought-resistant "Riverdel") under PEG-6000-induced water-deficit stress. Results revealed that water-deficit stress significantly enhanced oxidative damage and decreased photosynthetic functions in both cultivars. However, the damage was less in Riverdel. In addition, water-deficit stress significantly decreased the relative content of monogalactocyl-diacylglycerols (MGDG), sulfoquinovosyl-diacylglycerols (SQDG), phosphatidic acisd (PA), phosphatidyl-ethanolamines (PE), phosphatidyl-glycerols (PG), phosphatidyl-serines (PS), ceramides (Cer), hexosylmonoceramides (Hex1Cer), sphingomyelins (SM), and sphingosines (Sph) in both cultivars, but a more pronounced decline was observed in Ladino. Exogenous application of DA-6 significantly increased the relative content of digalactocyl-diacylglycerols (DGDG), monogalactocyl-diacylglycerolsabstra (MGDG), sulfoquinovosyl-diacylglycerols (SQDG), phosphatidic acids (PA), phosphatidyl-ethanolamines (PE), phosphatidyl-glycerols (PG), phosphatidyl-inositols (PI), phosphatidyl-serines (PS), ceramides (Cer), hexosylmonoceramides (Hex1Cer), neutral glycosphingolipids (CerG2GNAc1), and sphingosines (Sph) in the two cultivars under water-deficit stress. DA-6-treated Riverdel exhibited a significantly higher DGDG:MGDG ratio and relative content of sphingomyelins (SM) than untreated plants in response to water deficiency. Furthermore, the DA-6-pretreated plants increased the unsaturation index of phosphatidic acids (PA) and phosphatidylinositols (PI) in Ladino, ceramides (Cer) and hexosylmonoceramides (Hex1Cer) in Riverdel, and sulfoquinovosyl-diacylglycerols (SQDG) in both cultivars under water stress. These results suggested that DA-6 regulated drought resistance in white clover could be associated with increased lipid content and reprogramming, higher DGDG:MGDG ratio, and improved unsaturation index of lipids, contributing to enhanced membrane stability, integrity, fluidity, and downstream signaling transduction.

3.
Antioxidants (Basel) ; 10(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356332

RESUMEN

Persistent high temperature decreases the yield and quality of crops, including many important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal value, but is sensitive to temperatures above 30 °C. The present study was conducted to elucidate the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones, antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants under high-temperature stress. Our results reveal that improvement in endogenous GABA level in leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss. The GABA significantly enhanced gene expression and enzyme activities involved in antioxidant defense, including superoxide dismutase, catalase, peroxidase, and key enzymes of the ascorbic acid-glutathione cycle, thus reducing the accumulation of reactive oxygen species and the oxidative injury to membrane lipids and proteins. The GABA also increased endogenous indole-3-acetic acid content in roots and leaves and cytokinin content in leaves, associated with growth maintenance and reduced leaf senescence under heat stress. The GABA significantly upregulated the expression of PIP1-1 and PIP2-7 in leaves and the TIP2-1 expression in leaves and roots under high temperature, and also alleviated the heat-induced inhibition of PIP1-1, PIP2-2, TIP2-2, and NIP1-2 expression in roots, which could help to improve the water transportation and homeostasis from roots to leaves. In addition, the GABA-induced aquaporins expression and decline in endogenous abscisic acid level could improve the heat dissipation capacity through maintaining higher stomatal opening and transpiration in white clovers under high-temperature stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...