Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2404898, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101284

RESUMEN

The advancement of rechargeable Mg-metal batteries (RMBs) is severely impeded by the lack of suitable cathode materials. Despite the good cyclic stability of intercalation-type compounds, their specific capacity is relatively low. Conversely, the conversion-type cathodes can deliver a higher capacity but often suffer from poor cycling reversibility and stability. Herein, a WSe2/Se intercalation-conversion hybrid material with elemental Se uniformly distributed into WSe2 nanosheets is fabricated via a simple solvothermal method for high-performance RMBs. The uniformly introduced Se confined in WSe2 nanosheets can not only efficiently improve the conductivity of the hybrid cathodes, facilitating the fast electron transport and ion diffusion, but also provide additional specific capacity. Besides, the WSe2 can effectively inhibit the detrimental Se dissolution and polyselenide shuttle, thereby activating the activity of Se and improving its utilization. Consequently, the synergy of intercalation and conversion mechanisms endows WSe2/Se hybrids with superior reversible capacity of 252 mAh g-1 at 0.1 A g-1 and ultra-long cyclability of up to 5000 cycles at 2.0 A g-1 with capacity retention of 78.1%. This work demonstrates the feasibility of the strategy by integrating intercalation and conversion mechanisms for developing high-performance cathode materials for RMBs.

2.
J Colloid Interface Sci ; 677(Pt A): 120-129, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39083889

RESUMEN

Aiming at the key problem of Na+ insertion difficulty and low charge transfer efficiency of activated carbon materials. It is an effective strategy to increase the lattice spacing and defect concentration by doping to reduce the ion diffusion resistance and improve the kinetics. Hence, anthracitic coal is used to prepare activated carbon (AC) and B,P-doped activated carbon (B,P-AC) as the cathode and anode materials for high-performance all-carbon SICs, respectively. AC cathode material has high specific surface area and reasonable micropore structure, which shows excellent capacitance performance. B,P-AC anode material has the advantages of extremely high specific surface area (1856.1 m2/g), expanded interlayer spacing (0.40 nm) and uniform distribution of B and P heteroatoms. Hence, B,P-AC anode achieves a highly reversible Na+ storage capacity of 243 mAh/g at a current density of 0.05 A/g. Density functional theory (DFT) calculations further verify that B,P-AC has stronger Na+ storage performance. The final assembled B,P-AC//AC SIC offers a high energy density of 109.78 Wh kg-1 and a high-power density of 10.03 kW kg-1. The high-performance coal-derived activated carbon of this work provides a variety of options for industrial production of electrode materials for sodium ion capacitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...