Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1404108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873601

RESUMEN

Background: Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods: In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results: A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion: The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.


Asunto(s)
Ciervos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs , Fibrosis Pulmonar , ARN Mensajero , Transcriptoma , Animales , MicroARNs/genética , Ciervos/genética , Ciervos/inmunología , ARN Mensajero/genética , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/inmunología , Mapas de Interacción de Proteínas , Regulación de la Expresión Génica , Biología Computacional/métodos
2.
Mol Biotechnol ; 66(5): 1082-1094, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38151617

RESUMEN

Cerebral ischemia is a severe neurological disability related to neuronal apoptosis and cellular stress response. Circular RNAs (circRNAs) are emerging regulators of cerebral ischemia. Herein, this study proposed to probe the action of circ_0000115 in cerebral ischemia injury. The mouse neuroblastoma cells N2a and HT22 underwent oxygen-glucose deprivation (OGD) were used as a model of in vitro cerebral ischemia. Levels of genes and proteins were detected by qRT-PCR and western blotting. Cell proliferation and apoptosis were determined by EdU assay and flow cytometry. Western blotting was used to detect the protein level of pro-inflammatory factors. The oxidative stress injury was evaluated by detecting reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) generation. Dual-luciferase reporter and RIP assays were used to confirm the target relationship between miR-1224-5p and circ_0000115 or nitric oxide synthase 3 (NOS3). OGD exposure decreased circ_0000115 and NOS3 expression, and increased miR-1224-5p in N2a and HT22 cells in a time-dependent manner. Circ_0000115 silencing attenuated OGD-induced apoptosis, oxidative stress and inflammation in N2a and HT22 cells. Mechanistically, circ_0000115 directly sponged miR-1224-5p, which targeted NOS3. Furthermore, rescue experiments showed that miR-1224-5p overexpression abolished the neuroprotective effect of circ_0000115 in N2a and HT22 cells under OGD treatment. Besides that, silencing of miR-1224-5p protected N2a and HT22 cells against OGD-evoked injury, which was counteracted by NOS3 knockdown. Circ_0000115 protects N2a and HT22 cells against OGD-evoked neuronal apoptosis, inflammation, and oxidative stress via the miR-1224-5p/NOS3 axis, providing an exciting view of the pathogenesis of cerebral ischemia.


Asunto(s)
Apoptosis , Isquemia Encefálica , Inflamación , MicroARNs , Neuronas , Estrés Oxidativo , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , Animales , ARN Circular/genética , ARN Circular/metabolismo , Apoptosis/genética , Ratones , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Neuronas/metabolismo , Neuronas/patología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Línea Celular Tumoral , Glucosa/metabolismo , Glucosa/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico Sintasa de Tipo III
3.
Front Pharmacol ; 14: 1277395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954839

RESUMEN

Background: P. polyphylla var. yunnanensis, as a near-threatened and ethnic medicine in China, used to be a key ingredient in traditional Chinese medicine in treatment of traumatic injuries, sore throat, snakebites, and convulsions for thousands of years. However, there were no reports on the inverse relationship between the contents of heavy metals and saponins and its anti-breast cancer pharmacological activity in P. polyphylla var. yunnanensis. Methods: The present study aimed to reveal the characteristics of heavy metal contents and saponins and its anti-breast cancer pharmacological activity and their interrelationships in P. polyphylla var. yunnanensis from different production areas. The contents of heavy metal and steroidal saponins in P. polyphylla var. yunnanensis were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and the high-performance liquid chromatography technique, respectively. The Pearson correlation was used to study the correlation between saponins and heavy metals. 4T1 mouse mammary tumor cells were selected and cultivated for antitumor studies in vitro. Cell Counting Kit-8 (CCK-8) assay, Hoechst staining, and flow cytometry analysis were used for the examination of the proliferation and apoptosis of 4T1 tumor cells. Mouse breast cancer 4T1 cells were subcutaneously injected into BALB/c mice to construct a tumor model to explore the in vivo inhibitory effect on breast cancer. TUNEL assay and immunohistochemistry were used for the examination of the effect of P. polyphylla var. yunnanensis from different origins on cancer cell proliferation and apoptosis induction in 4T1 tumor mice. Results: Heavy metal contents were highly correlated with the content of steroidal saponins. The overall content of 10 metals in the three producing origins was of the order C3 >C2 >C1. The total content of eight steroidal saponins in the extracts of P. polyphylla var. yunnanensis from three different origins was C1 >C2 >C3. The Pearson correlation study showed that in all of the heavy metals, the contents of Cd and Ba were positively correlated with the main steroidal saponins in P. polyphylla var. yunnanensis, while Al, Cr, Cu, Fe, Zn, As, Hg, and Pb showed a negative correlation. In vitro experiments showed that the extracts of P. polyphylla var. yunnanensis from three origins could inhibit the proliferation and induce cell apoptosis of 4T1 cells in a concentration- and time-dependent manner, especially in the C1 origin. In vivo experiments showed that the extract of P. polyphylla var. yunnanensis from the three origins could inhibit the growth of tumors and induce the apoptosis of tumor cells. In the three origins, C1 origin had the lowest total heavy metal level but the highest total steroidal saponin level. Therefore, it showed a better effect in reducing the expression of the human epidermal growth factor receptor 2 (HER2) and Kiel 67 (Ki67) and increasing the expression of p53 in tumor tissues compared to the other origins. In conclusion, in the three origins, C1 origin exhibits antitumor pharmacological effects in vivo and in vitro which are better than those in the other origins. Conclusion: In this study, we found that with the increase of the heavy metal content, the content of steroid saponins and anti-breast cancer activity decreased. The results showed that the high content of the total heavy metals may not be conducive to the accumulation of steroidal saponins in P. polyphylla var. yunnanensis and lead to the low anti-breast cancer activity. The results of this study suggest that the content of heavy metals should be controlled in the artificial cultivation process of P. polyphylla var. yunnanensis.

4.
Genes (Basel) ; 14(9)2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37761894

RESUMEN

Paris polyphylla var. yunnanensis is a well-known medicinal plant that is mainly distributed in Southwest China; however, its genetic diversity and biodiversity processes are poorly understood. In this study, the sequences of cpDNA trnL-trnF fragments of 15 wild populations and 17 cultivated populations of P. polyphylla var. yunnanensis were amplified, sequenced, and aligned to study the population genetics of this species. Genetic diversity was analyzed based on nucleotide diversity, haplotype diversity, Watterson diversity, population-level diversity, and species-level genetic diversity. Genetic structure and genetic differentiation were explored using haplotype distribution maps and genetic distance matrices. A total of 15 haplotypes were identified in the 32 populations of P. polyphylla var. yunnanensis. Five unique haplotypes were identified from the fourteen haplotypes of the cultivated populations, while only one unique haplotype was identified from the ten haplotypes of the wild populations. The haplotype richness and genetic diversity of the cultivated populations were higher than those of the wild populations (HT = 0.900 vs. 0.861). In addition, there were no statistically significant correlations between geographic distance and genetic distance in the cultivated populations (r = 0.16, p > 0.05), whereas there was a significant correlation between geographical distance and genetic structure in the wild populations (r = 0.32, p > 0.05), indicating that there was a geographical and genetic connection between the wild populations. There was only 2.5% genetic variation between the wild populations and cultivated populations, indicating no obvious genetic differentiation between the wild and cultivated populations. Overall, the genetic background of the cultivated populations was complex, and it was hypothesized that the unique haplotypes and higher diversity of the cultivated populations were caused by the mixed provenance of the cultivated populations.


Asunto(s)
Ascomicetos , Escarabajos , Liliaceae , Animales , Biodiversidad , China , ADN de Cloroplastos/genética , Liliaceae/genética
5.
New Phytol ; 237(5): 1728-1744, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36444538

RESUMEN

Drought is a major environmental stress that threatens crop production. Therefore, identification of genes involved in drought stress response is of vital importance to decipher the molecular mechanism of stress signal transduction and breed drought tolerance crops, especially for maize. Clade A PP2C phosphatases are core abscisic acid (ABA) signaling components, regulating ABA signal transduction and drought response. However, the roles of other clade PP2Cs in drought resistance remain largely unknown. Here, we discovered a clade F PP2C, ZmPP84, that negatively regulates drought tolerance by screening a transgenic overexpression maize library. Quantitative RT-PCR indicates that the transcription of ZmPP84 is suppressed by drought stress. We identified that ZmMEK1, a member of the MAPKK family, interacts with ZmPP84 by immunoprecipitation and mass spectrometry analysis. Additionally, we found that ZmPP84 can dephosphorylate ZmMEK1 and repress its kinase activity on the downstream substrate kinase ZmSIMK1, while ZmSIMK1 is able to phosphorylate S-type anion channel ZmSLAC1 at S146 and T520 in vitro. Mutations of S146 and T520 to phosphomimetic aspartate could activate ZmSLAC1 currents in Xenopus oocytes. Taken together, our study suggests that ZmPP84 is a negative regulator of drought stress response that inhibits stomatal closure through dephosphorylating ZmMEK1, thereby repressing ZmMEK1-ZmSIMK1 signaling pathway.


Asunto(s)
Ácido Abscísico , Zea mays , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Zea mays/genética , Zea mays/metabolismo , Resistencia a la Sequía , Fitomejoramiento , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
6.
Mol Plant ; 15(7): 1192-1210, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35668674

RESUMEN

Plants adapt to their ever-changing environment via positive and negative signals induced by environmental stimuli. Drought stress, for instance, induces accumulation of the plant hormone abscisic acid (ABA), triggering ABA signal transduction. However, the molecular mechanisms for switching between plant growth promotion and stress response remain poorly understood. Here we report that RAF (rapidly accelerated fibrosarcoma)-LIKE MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 22 (RAF22) in Arabidopsis thaliana physically interacts with ABA INSENSITIVE 1 (ABI1) and phosphorylates ABI1 at Ser416 residue to enhance its phosphatase activity. Interestingly, ABI1 can also enhance the activity of RAF22 through dephosphorylation, reciprocally inhibiting ABA signaling and promoting the maintenance of plant growth under normal conditions. Under drought stress, however, the ABA-activated OPEN STOMATA1 (OST1) phosphorylates the Ser81 residue of RAF22 and inhibits its kinase activity, restraining its enhancement of ABI1 activity. Taken together, our study reveals that RAF22, ABI1, and OST1 form a dynamic regulatory network that plays crucial roles in optimizing plant growth and environmental adaptation under drought stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Mutación , Fosfoproteínas Fosfatasas/genética , Proteínas Quinasas/metabolismo
7.
Plant Cell ; 34(7): 2708-2729, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35404404

RESUMEN

Stomatal opening is largely promoted by light-activated plasma membrane-localized proton ATPases (PM H+-ATPases), while their closure is mainly modulated by abscisic acid (ABA) signaling during drought stress. It is unknown whether PM H+-ATPases participate in ABA-induced stomatal closure. We established that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) interacts with, phosphorylates and activates the major PM Arabidopsis H+-ATPase isoform 2 (AHA2). Detached leaves from aha2-6 single mutant Arabidopsis thaliana plants lost as much water as bak1-4 single and aha2-6 bak1-4 double mutants, with all three mutants losing more water than the wild-type (Columbia-0 [Col-0]). In agreement with these observations, aha2-6, bak1-4, and aha2-6 bak1-4 mutants were less sensitive to ABA-induced stomatal closure than Col-0, whereas the aha2-6 mutation did not affect ABA-inhibited stomatal opening under light conditions. ABA-activated BAK1 phosphorylated AHA2 at Ser-944 in its C-terminus and activated AHA2, leading to rapid H+ efflux, cytoplasmic alkalinization, and reactive oxygen species (ROS) accumulation, to initiate ABA signal transduction and stomatal closure. The phosphorylation-mimicking mutation AHA2S944D driven by its own promoter could largely compensate for the defective phenotypes of water loss, cytoplasmic alkalinization, and ROS accumulation in both aha2-6 and bak1-4 mutants. Our results uncover a crucial role of AHA2 in cytoplasmic alkalinization and ABA-induced stomatal closure during the plant's response to drought stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Mutación/genética , Fosforilación , Estomas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Agua/metabolismo
8.
J Integr Plant Biol ; 64(6): 1264-1280, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35352463

RESUMEN

The mechanisms that balance plant growth and stress responses are poorly understood, but they appear to involve abscisic acid (ABA) signaling mediated by protein kinases. Here, to explore these mechanisms, we examined the responses of Arabidopsis thaliana protein kinase mutants to ABA treatment. We found that mutants of BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) were hypersensitive to the effects of ABA on both seed germination and primary root growth. The kinase OPEN STOMATA 1 (OST1) was more highly activated by ABA in bak1 mutant than the wild type. BAK1 was not activated by ABA treatment in the dominant negative mutant abi1-1 or the pyr1 pyl4 pyl5 pyl8 quadruple mutant, but it was more highly activated by this treatment in the abi1-2 abi2-2 hab1-1 loss-of-function triple mutant than the wild type. BAK1 phosphorylates OST1 T146 and inhibits its activity. Genetic analyses suggested that BAK1 acts at or upstream of core components in the ABA signaling pathway, including PYLs, PP2Cs, and SnRK2s, during seed germination and primary root growth. Although the upstream brassinosteroid (BR) signaling components BAK1 and BR INSENSITIVE 1 (BRI1) positively regulate ABA-induced stomatal closure, mutations affecting downstream components of BR signaling, including BRASSINOSTEROID-SIGNALING KINASEs (BSKs) and BRASSINOSTEROID-INSENSITIVE 2 (BIN2), did not affect ABA-mediated stomatal movement. Thus, our study uncovered an important role of BAK1 in negatively regulating ABA signaling during seed germination and primary root growth, but positively modulating ABA-induced stomatal closure, thus optimizing the plant growth under drought stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Estomas de Plantas/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
9.
Plant Physiol ; 188(4): 1852-1865, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35088863

RESUMEN

Site-specific gene stacking could reduce the number of segregating loci and expedite the introgression of transgenes from experimental lines to field lines. Recombinase-mediated site-specific gene stacking provides a flexible and efficient solution, but this approach requires a recombinase recognition site in the genome. Here, we describe several cotton (Gossypium hirsutum cv. Coker 312) target lines suitable for Mycobacteriophage Bxb1 recombinase-mediated gene stacking. Obtained through the empirical screening of random insertion events, each of these target lines contains a single intact copy of the target construct with precise sequences of RS2, lox, and attP sites that is not inserted within or close to a known gene or near a centromere and shows good expression of the reporter gene gfp. Gene stacking was tested with insertion of different combinations of three candidate genes for resistance to verticillium wilt into three cotton target lines: CTS1, CTS3, and CTS4. Nine site-specific integration events were recovered from 95 independently transformed embryogenic calluses. Southern and DNA sequence analyses of regenerated plants confirmed precise site-specific integration, and resistance to verticillium wilt was observed for plant CTS1i3, which has a single precise copy of site-specifically integrated DNA. These cotton target lines can serve as foundation lines for recombinase-mediated gene stacking to facilitate precise DNA integration and introgression to field cultivars.


Asunto(s)
Gossypium , Verticillium , Resistencia a la Enfermedad/genética , Gossypium/genética , Gossypium/metabolismo , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Recombinasas/genética , Recombinasas/metabolismo , Transgenes
10.
Plant Cell ; 33(12): 3675-3699, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34469582

RESUMEN

Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Ascomicetos/fisiología , Proteínas Fúngicas/genética , Enfermedades de las Plantas/genética , Ubiquitina-Proteína Ligasas/genética , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Ascomicetos/genética , Resistencia a la Enfermedad/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Integr Plant Biol ; 63(3): 494-509, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33347703

RESUMEN

Both plant receptor-like protein kinases (RLKs) and ubiquitin-mediated proteolysis play crucial roles in plant responses to drought stress. However, the mechanism by which E3 ubiquitin ligases modulate RLKs is poorly understood. In this study, we showed that Arabidopsis PLANT U-BOX PROTEIN 11 (PUB11), an E3 ubiquitin ligase, negatively regulates abscisic acid (ABA)-mediated drought responses. PUB11 interacts with and ubiquitinates two receptor-like protein kinases, LEUCINE RICH REPEAT PROTEIN 1 (LRR1) and KINASE 7 (KIN7), and mediates their degradation during plant responses to drought stress in vitro and in vivo. pub11 mutants were more tolerant, whereas lrr1 and kin7 mutants were more sensitive, to drought stress than the wild type. Genetic analyses show that the pub11 lrr1 kin7 triple mutant exhibited similar drought sensitivity as the lrr1 kin7 double mutant, placing PUB11 upstream of the two RLKs. Abscisic acid and drought treatment promoted the accumulation of PUB11, which likely accelerates LRR1 and KIN7 degradation. Together, our results reveal that PUB11 negatively regulates plant responses to drought stress by destabilizing the LRR1 and KIN7 RLKs.


Asunto(s)
Adaptación Fisiológica , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Sequías , Proteínas de Unión a Fosfato/metabolismo , Proteínas Quinasas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Mutación/genética , Unión Proteica , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética
12.
Plant Physiol ; 181(3): 1075-1095, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31471454

RESUMEN

Cellular redox status plays critical roles in cell division and differentiation, but the underlying mechanism is unclear. Here we explored the effect of redox status on stem cell identity in distal stem cells (DSCs) of Arabidopsis (Arabidopsis thaliana) roots. Treatment with the reductive reagent glutathione and the oxidative reagent H2O2 inhibited DSC differentiation, as did endogenously altering reactive oxygen species production via various mutations. This suggests that both highly reductive and oxidative environments inhibit specification of stem cell identity. In our observations of mutant components of the CLAVATA3/ENDOSPERM SURROUNDING REGION 40 (CLE40)-ARABIDOPSIS CRINKLY4 (ACR4)/CLAVATA1 (CLV1)-WUSCHEL RELATED HOMEOBOX5 (WOX5) module, both reductive and oxidative reagents influenced DSC differentiation in wox5-1 and clv1-1, but not in acr4-2 or cle40 mutant plants. The stability of the receptor-like kinase ACR4 is modulated by redox status through endocytosis in root tips. ACR4 with multiple Cys mutations in the tumor necrosis factor receptor (TNFR) extracellular domain failed to undergo endocytosis. ACR4 with a complete deletion of the TNFR domain was localized directly to endosomes, bypassing the plasma membrane. Both mutations affected DSC differentiation, but not seed filling. Conversely, the intracellular domain of the ACR4 protein is partially required for seed filling, but not for DSC differentiation. Our study uncovers an important biological role of the TNFR domain in redox-mediated endocytosis of ACR4 in root DSC differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Endocitosis/fisiología , Células Madre/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/genética , Endocitosis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Oxidación-Reducción , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Semillas/metabolismo , Células Madre/metabolismo
13.
Bioinformatics ; 34(13): i386-i394, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950017

RESUMEN

Motivation: The fundamental challenge of modern genetic analysis is to establish gene-phenotype correlations that are often found in the large-scale publications. Because lexical features of gene are relatively regular in text, the main challenge of these relation extraction is phenotype recognition. Due to phenotypic descriptions are often study- or author-specific, few lexicon can be used to effectively identify the entire phenotypic expressions in text, especially for plants. Results: We have proposed a pipeline for extracting phenotype, gene and their relations from biomedical literature. Combined with abbreviation revision and sentence template extraction, we improved the unsupervised word-embedding-to-sentence-embedding cascaded approach as representation learning to recognize the various broad phenotypic information in literature. In addition, the dictionary- and rule-based method was applied for gene recognition. Finally, we integrated one of famous information extraction system OLLIE to identify gene-phenotype relations. To demonstrate the applicability of the pipeline, we established two types of comparison experiment using model organism Arabidopsis thaliana. In the comparison of state-of-the-art baselines, our approach obtained the best performance (F1-Measure of 66.83%). We also applied the pipeline to 481 full-articles from TAIR gene-phenotype manual relationship dataset to prove the validity. The results showed that our proposed pipeline can cover 70.94% of the original dataset and add 373 new relations to expand it. Availability and implementation: The source code is available at http://www.wutbiolab.cn: 82/Gene-Phenotype-Relation-Extraction-Pipeline.zip. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Minería de Datos/métodos , Estudios de Asociación Genética/métodos , Programas Informáticos , Bases de Datos Bibliográficas , Genotipo , Aprendizaje Automático , Fenotipo , Plantas/genética
14.
J Integr Plant Biol ; 60(9): 805-826, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29660240

RESUMEN

Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.


Asunto(s)
Membrana Celular/metabolismo , Estomas de Plantas/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sequías , Transducción de Señal/fisiología
15.
Curr Opin Plant Biol ; 38: 92-100, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28511115

RESUMEN

Reactive oxygen species (ROS) are widely produced in different cellular compartments under both biotic and abiotic stress conditions. ROS play a central role in plant signaling and regulate diverse cellular processes. Recent advances are shedding new light on sophisticated mechanisms controlling ROS biogenesis and signaling in plant immunity. In this review, we summarize our current understanding of the regulation of apoplastic ROS production in response to microbial molecular patterns and draw comparison with abscisic acid (ABA)-induced apoplastic ROS. We also discuss how ROS act as signal molecules to regulate cellular activities using stomatal movement as an example.


Asunto(s)
Especies Reactivas de Oxígeno/metabolismo , Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inmunidad de la Planta/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Biotechnol Bioeng ; 113(9): 2054-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26917255

RESUMEN

Alpha-ketobutyrate has been widely used in medicine and food additive industry. Because chemical and enzymatic methods are associated with many deficiencies, the recent focus shifted to fermentation for the production of α-ketobutyrate. In this study, a genetically engineered strain THRDΔrhtAΔilvIH/pWSK29-ilvA was constructed, starting from an L-threonine-producing strain, by overexpressing threonine dehydratase (TD), reducing α-ketobutyrate catabolism and L-threonine export. The shake flask cultivation of THRDΔrhtAΔilvIH/pWSK29-ilvA allowed the production of 16.2 g/L α-ketobutyrate. Accumulation of α-ketobutyrate severely inhibited the cell growth. To develop a better TD expression system and avoid the usage of the expensive inducer IPTG, a temperature-induced plasmid pBV220-ilvA was selected to transform the strain THRDΔrhtAΔilvIH for α-ketobutyrate production. The initial temperature was maintained at 35°C to guarantee normal cell growth, and then elevated to 40°C to induce the expression of TD. Under optimized conditions, the α-ketobutyrate titer reached 40.8 g/L after 28 h of fermentation, with a productivity of 1.46 g/L/h and a yield of 0.19 g/g glucose, suggesting large-scale production potential. Biotechnol. Bioeng. 2016;113: 2054-2059. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Butiratos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/fisiología , Ingeniería Metabólica/métodos , Técnicas de Cultivo Celular por Lotes , Butiratos/análisis , Escherichia coli/genética , Fermentación , Redes y Vías Metabólicas , Temperatura , Treonina Deshidratasa
17.
Water Res ; 47(7): 2431-45, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23478072

RESUMEN

The Three Gorges Reservoir (TGR) is the biggest lake in the world and a major water source in China. There is no information about occurrence and impact of Cryptosporidium and Giardia on the aquatic ecosystem. 61 surface water samples from 23 monitoring sites and 5 treated effluent samples were collected and analyzed. Cryptosporidium oocysts and Giardia cysts were found, respectively, in 86.4% and 65.2% of a total of 66 water samples, with high concentrations in treated effluent. The mean percent recovery was 29.14% for oocysts and 34.86% for cysts. A seasonal pattern was observed, with positive samples for Cryptosporidium more frequent in flood period and positive samples for Giardia more frequent in impounding period. Counts of enterococci, fecal coliforms and total coliforms, and turbidity were significantly associated with Cryptosporidium concentration in backwater (water in a main river which is backed up by the Three Gorges Dam) areas of tributaries but not Giardia. High associations were also found between oocyst and cyst in backwater areas of tributaries and cities. The risks of infection and illness due to water consumption in four different exposure routes were estimated. The results showed that swimming in the TGR has the highest infection risk with 1.39 × 10(-3) per time (95% confidence interval (CI): 0.05-600.3 × 10(-5)) for Cryptosporidium and 2.08 × 10(-4) per time (95% CI: 0.05-878.87 × 10(-6)) for Giardia, while directly drinking unboiled tap water treated with the conventional process has the highest morbidity with 524.98 per 100,000 population per year (95% CI: 10.35-2040.26) for Cryptosporidium and 5.89 per 100,000 population per year (95% CI: 0.08-22.67) for Giardia. This study provides new useful information for drinking water plants, health care workers and managers to improve the safety of tap water and deduce the risk of surface water contamination in China.


Asunto(s)
Cryptosporidium/fisiología , Monitoreo del Ambiente , Giardia/fisiología , Indicadores de Salud , Ríos/parasitología , Animales , China , Cryptosporidium/genética , Enterococcus/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Heces/microbiología , Técnicas de Genotipaje , Geografía , Giardia/genética , Hidrología , Oocistos/metabolismo , Estaciones del Año
18.
J Environ Sci (China) ; 25(9): 1913-24, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24520736

RESUMEN

The Three Gorges Reservoir (TGR), formed by China's Yangtze Three Gorges Project, is the largest lake in the world, but there is too little information available about fecal contamination and waterborne pathogen impacts on this aquatic ecosystem. During two successive 1-year study periods (July 2009 to July 2011), the water quality in Wanzhou watershed of the TGR was tested with regard to the presence of fecal indicators and pathogens. According to Chinese and World Health Organization water quality standards, water quality in the mainstream was good but poor in backwater areas. Salmonella, Enterohemorrhagic Escherichia coli (EHEC), Giardia and Cryptosporidium were detected in the watershed. Prevalence and concentrations of the pathogens in the mainstream were lower than those in backwater areas. The estimated risk of infection with Salmonella, EHEC, Cryptosporidium, and Giardia per exposure event ranged from 2.9 x 10(-7) to 1.68 x 10(-5), 7.04 x 10(-10) to 2.36 x 10(-7), 5.39 x 10(-6) to 1.25 x 10(-4) and 0 to 1.2 x 10(-3), respectively, for occupational divers and recreational swimmers exposed to the waters. The estimated risk of infection at exposure to the 95% upper confidence limit concentrations of Salmonella, Cryptosporidium and Giardia may be up to 2.62 x 10(-5), 2.55 x 10(-4) and 2.86 x 10(-3), respectively. This study provides useful information for the residents, health care workers and managers to improve the safety of surface water and reduce the risk of fecal contamination in the TGR.


Asunto(s)
Microbiología del Agua , Infecciones Bacterianas/epidemiología , Infecciones Bacterianas/microbiología , Secuencia de Bases , China/epidemiología , Recuento de Colonia Microbiana , Criptosporidiosis/epidemiología , Criptosporidiosis/microbiología , Cartilla de ADN , Heces/microbiología , Reacción en Cadena de la Polimerasa , Factores de Riesgo
19.
Biol Trace Elem Res ; 129(1-3): 270-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19129985

RESUMEN

A potential ecological risk assessment was conducted based on the analyzing results of the typical pollutants (Pb, Cu, Cr, Cd, and Zn) contents in the sediments of Yangtze River within the Wanzhou section using the index number techniques of single factor and Hakanson method for the quality status of the sediments. The results indicted that cadmium (Cd) had the largest pollution index and was the main pollution factor among the metals. The ecological risk sequence of the metals was Cd > Zn >Pb > Cu >Cr, while the sequence of the potential ecological risk posed by the metals was Cd > Pb > Cu> Zn >Cr. The index range of potential ecological risk was from 101.39 to 184.31, and the average index of potential ecological risk factors (RI) was 152.35. The Yangtze River within the Wanzhou section has a middle potential ecological risk.


Asunto(s)
Ecotoxicología , Sedimentos Geológicos/química , Metales Pesados/análisis , Ríos/química , Contaminantes del Suelo/análisis , China , Medición de Riesgo
20.
Bioprocess Biosyst Eng ; 32(3): 353-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18677516

RESUMEN

Various sensor-based immunoassay methods have been extensively developed for the detection of interleukin-6 (IL6), but most often exhibit low detection signals and low detection sensitivity, and are unsuitable for routine use. The aim of this work is to develop a simple and sensitive conductometric immunoassay for IL6 in human serum by using an organic/inorganic hybrid membrane-functionalized interface. Initially, thionine-bound 3,4,9,10-perylenetetracarboxylic acid was doped into colloidal alumina, then nanogold particles were immobilized onto the thionine surface, and then horseradish peroxidase-labeled anti-IL6 antibodies were conjugated on the nanogold surface. The organic/inorganic hybrid membrane provides a good microenvironment for the immobilization of biomolecules, enhanced the surface coverage of protein, and improved the sensitivity of the immunosensor. The performance and factors influencing the performance of the immunosensor were evaluated. The detection is based on the change in local conductivity before and after the antigen-antibody interaction in 0.02 M phosphate buffer solution (pH 6.8) containing 50 microM H(2)O(2), 0.01 M KI and 0.15 M NaC1. Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 25 to 400 pg/ml towards IL6 with a relatively low detection limit of 5 pg/ml (S/N = 3). The stability, reproducibility and precision of the immunosensor were acceptable. 37 serum specimens were assayed by the developed immunosensor and standard enzyme-linked immunosorbent assay, respectively, and the results obtained were almost consistent. More importantly, the detection methodology provides a promising approach for other proteins or biosecurity.


Asunto(s)
Técnicas Biosensibles/instrumentación , Análisis Químico de la Sangre/instrumentación , Electroquímica/instrumentación , Oro/química , Inmunoensayo/instrumentación , Interleucina-6/sangre , Nanopartículas/química , Técnicas Biosensibles/métodos , Conductividad Eléctrica , Electrodos , Diseño de Equipo , Análisis de Falla de Equipo , Compuestos Inorgánicos/química , Membranas Artificiales , Compuestos Orgánicos/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...