RESUMEN
OBJECTIVE: The aim of this study was to investigate the combined effect of handgrip strength (HGS) and obesity phenotype on the risk of stroke in Chinese middle-aged and elderly people. METHODS: The data was used from the China Health and Retirement Longitudinal Study (CHARLS). Middle-aged and older adults who participated in surveys between 2011 and 2018 were included in the study. They were divided into 4 different types of obesity phenotypes based on obesity and metabolic status: metabolically healthy non-overweight/obesity (MHNO), metabolically healthy overweight/obesity (MHO), metabolically abnormal non-overweight/obesity (MANO), and metabolically abnormal overweight/obesity (MAO). The HGS level was divided into low and high groups according to the median values. Cox proportional risk regression model was used to analyze the joint effect of HGS and obesity phenotype on the risk of stroke among participants. RESULTS: A total of 7904 participants aged 58.89±9.08 years were included in this study. After adjusting for potential confounders, high HGS&MHO (HR=1.86, 95 % CI=1.12-3.09), high HGS&MANO (HR=2.01, 95 %CI=1.42-2.86), high HGS&MAO (HR=2.01, 95 % CI=1.37-2.93), low HGS&MHNO (HR=1.57, 95 % CI=1.00-2.46), low HGS&MHO (HR=2.09, 95 % CI=1.29-3.38), low HGS&MANO (HR=2.02, 95 % CI=1.35-3.03), and low HGS&MAO (HR=2.48, 95 % CI=1.72-3.58) group had significantly higher risks of stroke than the high HGS&MHNO group. CONCLUSION: The coexistence of metabolically unhealthy and low HGS can synergistically increase the risk of stroke in Chinese middle-aged and elderly people.
Asunto(s)
Fuerza de la Mano , Obesidad , Fenotipo , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Persona de Mediana Edad , Fuerza de la Mano/fisiología , Obesidad/epidemiología , Obesidad/complicaciones , China/epidemiología , Accidente Cerebrovascular/epidemiología , Anciano , Factores de Riesgo , Estudios Longitudinales , Estudios de Cohortes , Pueblos del Este de AsiaRESUMEN
Fruit ripening is manipulated by the plant phytohormone ethylene in climacteric fruits. While the transcription factors (TFs) involved in ethylene biosynthesis and fruit ripening have been extensively studied in tomato, their identification in pear remains limited. In this study, we identified and characterized a HOMEODOMAIN TF, PbHB.G7.2, through transcriptome analysis. PbHB.G7.2 could directly bind to the promoter of the ethylene biosynthetic gene, 1-aminocyclopropane-1-carboxylic acid synthase (PbACS1b), thereby enhancing its activity and resulting in increased ethylene production during pear fruit ripening. Yeast-two-hybrid screening revealed that PbHB.G7.2 interacted with PbHB.G1 and PbHB.G2.1. Notably, these interactions disrupted the transcriptional activation of PbHB.G7.2. Interestingly, PbHB.G1 and PbHB.G2.1 also bind to the PbACS1b promoter, albeit different regions from those bound by PbHB.G7.2. Moreover, the regions of PbHB.G1 and PbHB.G2.1 involved in their interaction with PbHB.G7.2 differ from the regions responsible for binding to the PbACS1b promoter. Nonetheless, these interactions also disrupt the transcriptional activation of PbHB.G1 and PbHB.G2.1. These findings offer a new mechanism of ethylene biosynthesis during climacteric fruit ripening.
RESUMEN
BACKGROUND: Extensive research has been conducted on fruit development in crops, but the metabolic regulatory networks underlying perennial fruit trees remain poorly understood. To address this knowledge gap, we conduct a comprehensive analysis of the metabolome, proteome, transcriptome, DNA methylome, and small RNAome profiles of pear fruit flesh at 11 developing stages, spanning from fruitlet to ripening. Here, we systematically investigate the metabolic landscape and regulatory network involved. RESULTS: We generate an association database consisting of 439 metabolites and 14,399 genes to elucidate the gene regulatory network of pear flesh metabolism. Interestingly, we detect increased DNA methylation in the promoters of most genes within the database during pear flesh development. Application of a DNA methylation inhibitor to the developing fruit represses chlorophyll degradation in the pericarp and promotes xanthophyll, ß-carotene, and abscisic acid (ABA) accumulation in the flesh. We find the gradual increase in ABA production during pear flesh development is correlated with the expression of several carotenoid pathway genes and multiple transcription factors. Of these transcription factors, the zinc finger protein PbZFP1 is identified as a positive mediator of ABA biosynthesis in pear flesh. Most ABA pathway genes and transcription factors are modified by DNA methylation in the promoters, although some are induced by the DNA methylation inhibitor. These results suggest that DNA methylation inhibits ABA accumulation, which may delay fruit ripening. CONCLUSION: Our findings provide insights into epigenetic regulation of metabolic regulatory networks during pear flesh development, particularly with regard to DNA methylation.
Asunto(s)
Metilación de ADN , Pyrus , Pyrus/genética , Multiómica , Epigénesis Genética , Frutas/genética , Ácido Abscísico , Factores de Transcripción/genéticaRESUMEN
Gametophytic self-incompatibility (GSI) has been widely studied in flowering plants, but studies of the mechanisms underlying pollen tube growth arrest by self S-RNase in GSI species are limited. In the present study, two leucine-rich repeat extensin genes in pear (Pyrus bretschneideri), PbLRXA2.1 and PbLRXA2.2, were identified based on transcriptome and quantitative real-time PCR analyses. The expression levels of these two LRX genes were significantly higher in the pollen grains and pollen tubes of the self-compatible cultivar 'Jinzhui' (harboring a spontaneous bud mutation) than in those of the self-incompatible cultivar 'Yali'. Both PbLRXA2.1 and PbLRXA2.2 stimulated pollen tube growth and attenuated the inhibitory effects of self S-RNase on pollen tube growth by stabilizing the actin cytoskeleton and enhancing cell wall integrity. These results indicate that abnormal expression of PbLRXA2.1 and PbLRXA2.2 is involved in the loss of self-incompatibility in 'Jinzhui'. The PbLRXA2.1 and PbLRXA2.2 promoters were directly bound by the ABRE-binding factor PbABF.D.2. Knockdown of PbABF.D.2 decreased PbLRXA2.1 and PbLRXA2.2 expression and inhibited pollen tube growth. Notably, the expression of PbLRXA2.1, PbLRXA2.2, and PbABF.D.2 was repressed by self S-RNase, suggesting that self S-RNase can arrest pollen tube growth by restricting the PbABF.D.2-PbLRXA2.1/PbLRXA2.2 signal cascade. These results provide novel insight into pollen tube growth arrest by self S-RNase.
Asunto(s)
Pyrus , Ribonucleasas , Ribonucleasas/genética , Ribonucleasas/metabolismo , Tubo Polínico/metabolismo , Pyrus/genética , Pyrus/metabolismo , Polen/genética , Citoesqueleto de Actina/metabolismoRESUMEN
Background: Studies have shown the association of vitamin D status with the development of metabolic syndrome (MetS), which has attracted an extensive research interest with inconsistent results. Therefore, we hypothesized that vitamin D supplementation (VDS) will benefit adults with MetS. Aims: To test our hypothesis, we performed a meta-analysis to evaluate the effect of VDS on MetS in adults using relevant biomarkers such as anthropometric parameters, blood pressure, blood lipid profile, glycemia, oxidative stress and vitamin D toxicity (VDT). Methods: Randomized controlled trials published in PubMed, Web of Science, embase and the Cochrane Library between 2012 and 2022 on the effect of VDS on MetS in adults were searched. The language was limited to English. A meta-analysis performed using RevMan 5.4 and Stata 14.0 software, sensitivity analysis, and evaluation of the risk of bias and general quality of the resulting evidence were conducted. Results: Eventually, 13 articles were included in this meta-analysis. Overall, VDS significantly increased the endline serum 25-hydroxyvitamin D levels as compared to the control [MD:17.41, 95% CI (14.09, 20.73), p < 0.00001]. VDS did not affect waist circumference, body mass index, body fat percentage and VDT biomarkers, but decreased waist-to-hip ratio and blood pressure (p < 0.01). VDS significantly decreased fasting plasma glucose (FPG) [MD: 3.78; 95% CI (-6.52, -1.03), p = 0.007], but did not affect the levels of blood high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglyceride (TG). Pooled estimate of nine papers indicated a significant reduction of fasting insulin (FI) (p = 0.006), and homeostasis model assessment of insulin resistance (p = 0.0001). The quantitative insulin check index levels were moderately increased (p = 0.007) without any impact on the glycosylated hemoglobin type A1C (HbA1c). For the oxidative stress parameters, VDS significantly lowered the levels of malondialdehyde and hypersensitive C-reactive protein (p < 0.05). Conclusion: Results of this meta-analysis demonstrate that VDS only reduces insulin resistance and hypertension but not the blood lipid profile and HbA1c. It appears that the evidence for the benefit of VDS in adults with MetS is inconclusive. Further clinical studies are still needed.
RESUMEN
Pear (Pyrus spp.) is one of the most common fruit crops grown in temperate regions worldwide. Genetic enhancement of fruit quality is a fundamental goal of pear breeding programs. The genetic control of pear fruit quality traits is highly quantitative, and development of high-density genetic maps can facilitate fine-mapping of quantitative trait loci (QTLs) and gene identification. Bin-mapping is a powerful method of constructing high-resolution genetic maps from large-scale genotyping datasets. We performed whole-genome sequencing of pear cultivars 'Niitaka' and 'Hongxiangsu' and their 176 F 1 progeny to identify genome-wide single-nucleotide polymorphism (SNP) markers for constructing a high-density bin-map of pear. This analysis yielded a total of 1.93 million SNPs and a genetic bin-map of 3190 markers spanning 1358.5 cM, with an average adjacent interval of 0.43 cM. This bin-map, along with other high-density genetic maps in pear, improved the reference genome assembly from 75.5 to 83.7% by re-anchoring the scaffolds. A quantitative genetic analysis identified 148 QTLs for 18 fruit-related traits; among them, QTLs for stone cell content, several key monosaccharides, and fruit pulp acids were identified for the first time in pear. A gene expression analysis of six pear cultivars identified 399 candidates in the identified QTL regions, which showed expression specific to fruit developmental stages in pear. Finally, we confirmed the function of PbrtMT1, a tonoplast monosaccharide transporter-related gene responsible for the enhancement of fructose accumulation in pear fruit on linkage group 16, in a transient transformation experiment. This study provides genomic and genetic resources as well as potential candidate genes for fruit quality improvement in pear.
RESUMEN
Sorbitol is the primary substrate translocated from source to sink in pear species. Among the many sorbitol transporters (SOTs), some are known to be involved in sorbitol accumulation in fruit; however, their particular roles are unclear. In this study, we examined the transcriptome and metabolome of a variety of pear samples from six time points to identify those SOTs. Similar to previous studies, sorbitol and sucrose differed significantly between the leaf and fruit, and sorbitol was consistently observed at higher concentrations at all time points. Interestingly, we found that sorbitol accumulation in pear fruit was cooperatively mediated by SOT3, SOT6/20, SOT19/21, and SOT22. In particular, the up-regulated SOT6/20 and SOT19/21 in fruit under 1 mg L-1 abscisic acid and 10 mg L-1 indole acetic acid treatments, respectively, resulted in an increased sorbitol concentration. In addition, sorbitol concentration showed positive correlations to fructose and glucose concentrations, indicating a role for sorbitol in the determination of fruit sweetness. Together with the deduced process of sugar biosynthesis, transport, conversion, and accumulation in pear, our study provides a foundation for further research into sugar accumulation processes in pear fruit, contributing to the improvement of fruit quality.
Asunto(s)
Frutas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pyrus/metabolismo , Sorbitol/metabolismo , Fructosa/metabolismo , Perfilación de la Expresión Génica , Glucosa/metabolismo , Hojas de la Planta/metabolismo , Sacarosa/metabolismo , TranscriptomaRESUMEN
Homeobox transcription factors belong to a superfamily that has been widely studied in plant growth and development, but little is known regarding their role in fruit development and ripening. Using a genome-wide expression analysis of homeobox (HB) genes and quantitative real-time PCR, a HD-ZIP II member, PpHB.G7, which presented higher levels of expression in ripening fruits than in developing fruits in all of the tested cultivars, was isolated from peach. Transient transformations showed that PpHB.G7 affects ethylene production and the expression of ethylene biosynthesis genes (PpACS1 and PpACO1). Both dual-luciferase and yeast one-hybrid assays confirmed that PpHB.G7 interacts with the promoters of PpACS1 and PpACO1. Thus, PpHB.G7 mediates ethylene biosynthesis by stimulating PpACS1 and PpACO1 activities. Furthermore, we also found that the other eight HB genes were differentially expressed in the developing fruits, with seven of these genes belonging to the HD-ZIP family. These results suggest that the HB genes in the HD-ZIP family play important roles in fruit development and ripening.
Asunto(s)
Etilenos/biosíntesis , Proteínas de Homeodominio/fisiología , Proteínas de Plantas/fisiología , Prunus persica/metabolismo , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Análisis de Secuencia de ProteínaRESUMEN
Ethylene response factor (ERF) has been widely studied in regulating fruit ripening in tomato, apple, banana and kiwifruit, but little is known in pear. In this study 1-methylcyclopropene (1-MCP) treatment, an inhibitor of ethylene perception, was conducted at approximately 30 days before harvest to delay fruit ripening in a climacteric white pear cultivar Yali. Transcriptome libraries were constructed and sequenced in pre-ripening, ripening, and 1-MCP treated fruits. Data analysis showed that 73 candidate genes related to fruit ripening were induced by 1-MCP, among which two were positively related, namely 1-aminocyclopropane-1-carboxyla oxidase and an ERF gene (designated as ACO54 and ERF24). Transient transformations in pear fruit revealed that over-expression of ACO54 enhance transcription level of ERF24 and most ripening-related genes. Meanwhile, over-expression of ERF24 raises expression level of ACO54 and partially ripening-related genes. Moreover, dual-luciferase and yeast-one-hybrid assays unravel an interaction between ERF24 and the ACO54 promoter. Therefore, the ERF24 could directly regulate ACO54 expression by binding to its promoter. These results suggested that the first identified ERF24 is involved in regulating fruit ripening in Chinese white pear.