RESUMEN
Glioblastoma (GBM) cells have the potential to switch from being "proliferative cells" to peritumoral "invasive cells". Peritumoral GBM cells have highly invasive properties that allow them to survive surgery, leading to recurrence. The mechanisms underlying the manner in which the tumor microenvironment (TME) regulates the invasiveness of GBM remain unclear. Single-cell RNA sequencing analysis revealed heterogeneity in GBM cells, microglia and macrophages. In this study, the Oncostatin M receptor (OSMR) and leukemia inhibitory factor receptor (LIFR) expression indicated higher invasiveness in core GBM cells. Under environmental stress, the expression of OSMR and LIFR were up-regulated with the effect of hypoxic, acidic, and low-glucose conditions in vitro. Functional experiments revealed that TME stress significantly influences the proliferation, migration and invasion of GBM cells. The differences in core/peripheral TMEs in GBM affected the invasive properties, indicating the significant role of OSMR expression within the TME in tumor progression and postoperative therapy.
RESUMEN
The mechanism connecting gut microbiota to appetite regulation is not yet fully understood. This study identifies specific microbial community and metabolites that may influence appetite regulation. In the initial phase of the study, mice were administered a broad-spectrum antibiotic cocktail (ABX) for 10 days. The treatment significantly reduced gut microbes and disrupted the metabolism of arginine and tryptophan. Consequently, ABX-treated mice demonstrated a notable reduction in feed consumption. The hypothalamic expression levels of CART and POMC, two key anorexigenic factors, were significantly increased, while orexigenic factors, such as NPY and AGRP, were decreased. Notably, the levels of appetite-suppressing hormone cholecystokinin in the blood were significantly elevated. In the second phase, control mice were maintained, while the ABX-treated mice received saline, probiotics, and short-chain fatty acids (SCFAs) for an additional 10 days to restore their gut microbiota. The microbiota reconstructed by probiotic and SCFA treatments were quite similar, while microbiota of the naturally recovering mice demonstrated greater resemblance to that of the control mice. Notably, the abundance of Akkermansia and Bacteroides genera significantly increased in the reconstructed microbiota. Moreover, microbiota reconstruction corrected the disrupted arginine and tryptophan metabolism and the abnormal peripheral hormone levels caused by ABX treatment. Among the groups, SCFA-treated mice had the highest feed intake and NPY expression. Our findings indicate that gut microbes, especially Akkermansia, regulate arginine and tryptophan metabolism, thereby influencing appetite through the microbe-gut-brain axis.
Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Ratones Endogámicos C57BL , Antibacterianos/farmacología , Triptófano/metabolismo , Apetito/efectos de los fármacos , Probióticos/farmacología , Arginina/farmacología , Arginina/metabolismo , Hipotálamo/metabolismo , Regulación del Apetito/fisiología , Ácidos Grasos Volátiles/metabolismoRESUMEN
Introduction: As a symbiotic probiotic for the host, Clostridium butyricum (CB) has the potential to strengthen the body's immune system and improve intestinal health. However, the probiotic mechanism of CB is not completely understood. The Clostridium butyricum CBX 2021 strain isolated by our team from a health pig independently exhibits strong butyric acid production ability and stress resistance. Therefore, this study comprehensively investigated the efficacy of CBX 2021 in pigs and its mechanism of improving pig health. Methods: In this study, we systematically revealed the probiotic effect and potential mechanism of the strain by using various methods such as microbiome, metabolites and transcriptome through animal experiments in vivo and cell experiments in vitro. Results: Our in vivo study showed that CBX 2021 improved growth indicators such as daily weight gain in weaned piglets and also reduced diarrhea rates. Meanwhile, CBX 2021 significantly increased immunoglobulin levels in piglets, reduced contents of inflammatory factors and improved the intestinal barrier. Subsequently, 16S rRNA sequencing showed that CBX 2021 treatment implanted more butyric acid-producing bacteria (such as Faecalibacterium) in piglets and reduced the number of potentially pathogenic bacteria (like Rikenellaceae RC9_gut_group). With significant changes in the microbial community, CBX 2021 improved tryptophan metabolism and several alkaloids synthesis in piglets. Further in vitro experiments showed that CBX 2021 adhesion directly promoted the proliferation of a porcine intestinal epithelial cell line (IPEC-J2). Moreover, transcriptome analysis revealed that bacterial adhesion increased the expression of intracellular G protein-coupled receptors, inhibited the Notch signaling pathway, and led to a decrease in intracellular pro-inflammatory molecules. Discussion: These results suggest that CBX 2021 may accelerate piglet growth by optimizing the intestinal microbiota, improving metabolic function and enhancing intestinal health.
RESUMEN
Deep brain stimulation (DBS) is a common therapy for managing Parkinson's disease (PD) in clinical practice. However, a complete understanding of its mode of action is still needed. DBS is believed to work primarily through electrical and neurochemical pathways. Furthermore, DBS has other mechanisms of action. This review explores the fundamental concepts and applications of DBS in treating PD, including its mechanisms, clinical implications, and recent research.
Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Humanos , Encéfalo/fisiopatología , AnimalesRESUMEN
Gut bacteria belonging to the Clostridium family play a pivotal role in regulating host energy balance and metabolic homeostasis. As a commensal bacterium, Clostridium sporogenes has been implicated in modulating host energy homeostasis, albeit the underlying mechanism remains elusive. Therefore, this study aimed to investigate the impact of C. sporogenes supplementation on various physiological parameters, intestinal morphology, particularly adipose tissue accumulation, and glucolipid metabolism in mice. The findings reveal that mice supplemented with C. sporogenes for 6 weeks exhibited a notable increase in body weight, fat mass, adipocyte size, and serum triglyceride (TG) levels. Notably, the increased fat accumulation is observed despite consistent feed intake in treated mice. Mechanistically, C. sporogenes supplementation significantly improved the structure integrity of intestinal villi and enhanced energy absorption efficiency while reducing excretion of carbohydrates and fatty acids in feces. This was accompanied by upregulation of glucose and fatty acid transporter expression. Furthermore, supplementation with C. sporogenes promoted adipogenesis in both liver and adipose tissues, as evidenced by increased levels of hepatic pyruvate, acetyl-CoA, and TG, along with elevated expression levels of genes associated with lipid synthesis. Regarding the microbiological aspect, C. sporogenes supplementation correlated with an increased abundance of Clostridium genus bacteria and enhanced carbohydrate enzyme activity. In summary, C. sporogenes supplementation significantly promotes fat accumulation in mice by augmenting energy absorption and adipogenesis, possibly mediated by the expansion of Clostridium bacteria population with robust glycolipid metabolic ability. IMPORTANCE: The Clostridia clusters have been implicated in energy metabolism, the specific species and underlying mechanisms remain unclear. This present study is the first to report Clostridium sporogenes is able to affect fat accumulation and glycolipid metabolism. We indicated that gavage of C. sporogenes promoted the adipogenesis and fat accumulation in mice by not only increasing the abundance of Clostridium bacteria but by also enhancing the metabolic absorption of carbohydrates and fatty acids significantly. Obviously, changes of gut microbiota caused by the C. sporogenes, especially the significant increase of Clostridium bacteria, contributed to the fat accumulation of mice. In addition, the enhancement of Clostridium genus bacteria remarkably improved the synthesis of hepatic pyruvate, acetyl-CoA, and triglyceride levels, as well as reduced the excretion of fecal carbohydrates, short-chain fatty acids, and free fatty acids remarkably. These findings will help us to understand the relationship of specific bacteria and host energy homeostasis.
Asunto(s)
Adipogénesis , Clostridium , Metabolismo Energético , Microbioma Gastrointestinal , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Clostridium/metabolismo , Clostridium/genética , Masculino , Tejido Adiposo/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Metabolismo de los Lípidos , Triglicéridos/metabolismoRESUMEN
BACKGROUND: Resolvin D1 (RvD1), a specialized pro-resolving lipid mediator (SPM), is derived from docosahexaenoic acid (DHA). It plays a key role in actively resolving inflammatory responses, which further reduces small intestinal damage. However, its regulation of the apoptosis triggered by endoplasmic reticulum (ER) stress in intestinal epithelial cells is still poorly understood. The intestinal porcine epithelial cells (IPEC-J2) were stimulated with tunicamycin to screen an optimal stimulation time and concentration to establish an ER stress model. Meanwhile, RvD1 (0, 1, 10, 20, and 50 nM) cytotoxicity and its impact on cell viability and the effective concentration for reducing ER stress and apoptosis were determined. Finally, the effects of RvD1 on ER stress and associated apoptosis were furtherly explored by flow cytometry analysis, AO/EB staining, RT-qPCR, and western blotting. RESULTS: The ER stress model of IPEC-J2 cells was successfully built by stimulating the cells with 1 µg/mL tunicamycin for 9 h. Certainly, the increased apoptosis and cell viability inhibition also appeared under the ER stress condition. RvD1 had no cytotoxicity, and its concentration of 1 nM significantly decreased cell viability inhibition (p= 0.0154) and the total apoptosis rate of the cells from 14.13 to 10.00% (p= 0.0000). RvD1 at the concentration of 1 nM also significantly reduced the expression of glucose-regulated protein 78 (GRP-78, an ER stress marker gene) (p= 0.0000) and pro-apoptotic gene Caspase-3 (p= 0.0368) and promoted the expression of B cell lymphoma 2 (Bcl-2, an anti-apoptotic gene)(p= 0.0008). CONCLUSIONS: Collectively, the results shed light on the potential of RvD1 for alleviating apoptosis triggered by ER stress, which may indicate an essential role of RvD1 in maintaining intestinal health and homeostasis.
Asunto(s)
Apoptosis , Ácidos Docosahexaenoicos , Animales , Porcinos , Ácidos Docosahexaenoicos/farmacología , Tunicamicina/farmacología , Estrés del Retículo EndoplásmicoRESUMEN
This study reports the whole-genome sequence of Lactiplantibacillus plantarum cqf-43 isolated from healthy sow feces. Based on genomic analysis, we performed a comprehensive safety assessment of strain cqf-43, using both in vitro and in vivo experiments, and explored its probiotic potential. The total genome length measures 3,169,201 bp, boasting a GC content of 44.59%. Through phylogenetic analyses, leveraging both 16S rRNA gene and whole-genome sequences, we confidently categorize strain cqf-43 as a member of Lactiplantibacillus. Genome annotation using Prokka unveiled a total of 3141 genes, encompassing 2990 protein-coding sequences, 71 tRNAs, 16 rRNAs, and 1 tmRNA. Functional annotations derived from COG and KEGG databases highlighted a significant abundance of genes related to metabolism, with a notable emphasis on carbohydrate utilization. The genome also revealed the presence of prophage regions and CRISPR-Cas regions while lacking virulence and toxin genes. Screening for antibiotic resistance genes via the CARD database yielded no detectable transferable resistance genes, effectively eliminating the potential for harmful gene transfer. It is worth highlighting that the virulence factors identified via the VFDB database primarily contribute to bolstering pathogen resilience in hostile environments. This characteristic is particularly advantageous for probiotics. Furthermore, the genome is devoid of menacing genes such as hemolysin, gelatinase, and biogenic amine-producing genes. Our investigation also unveiled the presence of three unannotated secondary metabolite biosynthetic gene clusters, as detected by the online tool antiSMASH, suggesting a great deal of unknown potential for this strain. Rigorous in vitro experiments confirmed tolerance of strain cqf-43 in the intestinal environment, its antimicrobial efficacy, sensitivity to antibiotics, absence of hemolysis and gelatinase activity, and its inability to produce biogenic amines. In addition, a 28-day oral toxicity test showed that the strain cqf-43 did not pose a health hazard in mice, further establishing it as a safe strain.
Asunto(s)
Genoma Bacteriano , Probióticos , Animales , Femenino , Porcinos , Ratones , ARN Ribosómico 16S , Filogenia , Antibacterianos , Gelatinasas/genética , Análisis de SecuenciaRESUMEN
The present experiment was conducted to determine the effect of bile acids (BAs) supplementation on growth performance, BAs profile, fecal microbiome, and serum metabolomics in growing-finishing pigs. A total of 60 pigs [Durocâ ×â (Landraceâ ×â Yorkshire)] with an average body weight of 27.0â ±â 1.5 kg were selected and allotted into one of 2 groups (castrated male to female ratioâ =â 1:1), with 10 replicates per treatment and 3 pigs per replicate. The 2 treatments were the control group (control) and a porcine bile extract-supplemented group dosed at 0.5 g/kg feed (BA). After a 16-wk treatment, growth performance, BAs profiles in serum and feces, and fecal microbial composition were determined. An untargeted metabolomics approach using gas chromatography with a time-of-flight mass spectrometer was conducted to identify the metabolic pathways and associated metabolites in the serum of pigs. We found that BAs supplementation had no effect on the growth performance of the growing-finishing pig. However, it tended to increase the gain-to-feed ratio for the whole period (Pâ =â 0.07). BAs supplementation resulted in elevated serum concentrations of secondary bile acids, including hyodeoxycholic acid (HDCA), glycoursodeoxycholic acid, and tauro-hyodeoxycholic acid, as well as fecal concentration of HDCA (Pâ <â 0.05). Fecal microbiota analysis revealed no differences in alpha and beta diversity indices or the relative abundance of operational taxonomic units (OTUs) at both phylum and genus levels between groups. Metabolic pathway analysis revealed that the differential metabolites between control and BA groups are mainly involved in purine metabolism, ether lipid metabolism, glycerophospholipid metabolism, and amino sugar and nucleotide sugar metabolism, as well as primary bile acid biosynthesis. Our findings indicate that BAs supplementation tended to improve the feed efficiency, and significantly altered the BA profile in the serum and feces of growing-finished pigs, regardless of any changes in the gut microbial composition. The altered metabolic pathways could potentially play a vital role in improving the feed efficiency of growing-finished pigs with BAs supplementation.
Bile acids (BAs), known to exhibit a key role in emulsification and absorption of dietary fat in the intestinal lumen, have also become appreciated as important regulators of intestinal function, lipid and energy metabolism in humans and animals. This study investigated the effect of BAs supplementation on growth performance, BAs profile, fecal microbiome, and serum metabolomics in growing-finishing pigs. The results showed that BAs supplementation had few effects on pig growth performance and fecal microbiota, but modified serum and fecal BAs profile and serum metabolomics profile. The altered metabolic pathways could potentially play a vital role in improving the feed efficiency of growing-finished pigs with BAs supplementation.
Asunto(s)
Ácidos y Sales Biliares , Microbiota , Masculino , Femenino , Animales , Porcinos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Heces/química , Alimentación Animal/análisisRESUMEN
BACKGROUND: Parkinson's disease (PD) is a well-known neurodegenerative disease that is usually caused by the progressive loss of dopamine neurons and the formation of Lewy vesicles. 3,4-Methylenedioxymethamphetamine (MDMA) has been reported to cause damage to human substantia nigra neurons and an increased risk of PD, but the exact molecular mechanisms need further investigation. METHODS: MPTP- and MPP+-induced PD cells and animal models were treated with Nissl staining to assess neuronal damage in the substantia nigra (SN) area; immunohistochemistry to detect TH expression in the SN; TUNEL staining to detect apoptosis in the SN area; Western blotting to detect the inflammatory factors NF-κB, TNF-α, IL-6 and mitogen-activated protein kinase kinase kinase 3 (MEKK3); Griess assay for NO; RTâqPCR for metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-124 expression; Cell proliferation was assessed by CCK-8. Dual luciferase reporter genes were used to verify targeting relationships. RESULTS: MDMA promoted MALAT1 expression, and knockdown of MALAT1 alleviated the MDMA-induced inhibition of SH-SY5Y cell proliferation, inflammation, NO release, SN neuronal injury, and TH expression inhibition. Both inhibition of miR-124 and overexpression of MEKK3 reversed the neuroprotective effects exhibited by knockdown of MALAT1. CONCLUSION: MDMA promotes MALAT1 expression and inhibits the targeted downregulation of MEKK3 by miR-124, resulting in upregulation of the expression of MEKK3 and finally jointly promoting PD progression.
Asunto(s)
MicroARNs , N-Metil-3,4-metilenodioxianfetamina , Neuroblastoma , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , ARN Largo no Codificante , Animales , Humanos , Enfermedad de Parkinson/genética , N-Metil-3,4-metilenodioxianfetamina/farmacología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/metabolismo , Apoptosis , Neuronas Dopaminérgicas/metabolismo , Progresión de la Enfermedad , Línea Celular TumoralRESUMEN
This study aims to elucidate the role of miR-23b-3p in mesenchymal stem cell exosomes in regulating the Wnt signaling pathway to promote autophagy of neurons and alleviate Parkinson's disease (PD) symptoms. We generated rat and cellular PD models with 6-OHDA, treated them with mesenchymal stem cell exosomes rich in miR-23b-3p and determined the expression of α-syn and Wnt/ß-catenin pathway and autophagy-related genes. In the plasma of PD patients, the levels of miR-23b-3p and the Wnt/ß-catenin pathway-related genes ß-catenin and DAT were low, while α-syn expression was high. In the PD cell model, miR-23b-3p was downregulated, the Wnt pathway was inhibited, α-syn was upregulated, neuron autophagy was inhibited, and the revitalization of the Wnt/ß-catenin pathway could promote the autophagy of neurons. Coculture of miR-23b-3p-enriched exosomes with MN9D cells confirmed that miR-23b-3p-enriched exosomes could promote autophagy in MN9D cells in a PD cell model. Moreover, animal experiments confirmed the results of the cell experiments. Therefore, miR-23b-3p-enriched mesenchymal stem cell exosomes promote neuronal autophagy by regulating the Wnt signaling pathway, thus alleviating PD progression and providing an important basis for the clinical treatment of PD.
Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Enfermedad de Parkinson , Humanos , Ratas , Animales , MicroARNs/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Exosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Autofagia/genética , Células Madre Mesenquimatosas/metabolismoRESUMEN
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the gradual death of dopaminergic neurons. Brain-derived neurotrophic factor (BDNF) and its receptors are widely distributed throughout the central nervous system, which can promote the survival and growth of neurons and protect neurons. This study revealed that BDNF promotes STAT3 phosphorylation and regulates autophagy in neurons. The PD mouse model was established by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Moreover, SH-SY5Y cells were treated with 1-methyl-4-phenyl-pyridinium (MPP+) to establish a PD cell model. The level of BDNF was low in PD model mice and SH-SY5Y cells treated with MPP+. BDNF enhanced the levels of p-TrkB, P-STAT3, PINK1, and DJ-1. BDNF promoted autophagy, inhibited the level of p-α-syn (Ser129) and enhanced cell proliferation. The autophagy inhibitor 3-Methyladenine (3-methyladenine, 3-MA) reversed the protective effects of BDNF on neurons. BiFC assay results showed that there was a direct physical interaction between BDNF and STAT3, and coimmunoprecipitation experiments indicated an interaction between STAT3 and PI3K. The PI3K agonist Recilisib activated the PI3K/AKT/mTOR pathway, promoted autophagy, and alleviated neuronal cell damage. BDNF alleviates PD pathology by promoting STAT3 phosphorylation and regulating neuronal autophagy in SH-SY5Y cells and cultured primary neurons. Finally, BDNF has neuroprotective effects on PD model mice.
Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Humanos , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Autofagia , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones Endogámicos C57BL , Neuroblastoma/patología , Enfermedad de Parkinson/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Factor de Transcripción STAT3/metabolismoRESUMEN
We investigated the effects of dietary supplementation of lactic acid bacteria on the immune and antioxidant performance of weaned pigs. A total of 128 Duroc × Landrace × Yorkshire piglets weaned on day 28 with an average body weight of 8.95 ± 1.15 kg were selected and randomly divided into four treatment groups according to body weight and sex for a 28-day study. The four dietary treatments were basal diet (CON), and CON with 0.05% (LJ0.05), 0.1% (LJ0.1), and 0.2% (LJ0.2) Lactobacillus johnsonii RS-7, respectively. The lowest feed-to-gain ratio (F:G) was found when LJ0.1 was added to the diet. The addition of compound lactic acid bacteria to the diet increased the concentrations of TP, ALB, IgA, and IgM on day 14 and IgG, IgA, and IgM on day 28 (p < 0.05) in the blood, with trait values greater for pigs fed LJ0.1 than CON pigs (p < 0.05). Concentrations of antioxidants (CAT, T-AOC, MDA, T-SOD, and GSH) in serum, intestinal mucosa, spleen, liver, and pancreas improved. In summary, dietary supplementation of Lactobacillus johnsonii RS-7 improved the antioxidant and immune function of weaned piglets.
RESUMEN
Background: Parkinson's disease (PD) is a very common neurodegenerative disease that adversely affects the physical and mental health of many patients, but there is currently no effective treatment. Objective: To this end, this study focused on investigating the potential mechanisms leading to dopaminergic neuronal apoptosis in PD. Methods: Rotenone induces damage in dopaminergic neuronal MN9D cells. Apoptosis was detected by flow cytometry, and the expression of apoptosis-related proteins was detected by western blot. RT-qPCR was used to detect the expression of MALAT1 and miR-23b-3p. The expression of α-synuclein was detected by ELISA. A dual luciferase gene reporter assay was used to determine the targeted regulatory relationship between MALAT1 and miR-23b-3p and miR-23b-3p and α-synuclein. MN9D supernatant was cocultured with BV-2 cells, or BV-2 cells were treated with exogenous α-synuclein and then treated with an autophagy inhibitor (3-MA) and autophagy activator (RAPA). The expression of α-synuclein in BV-2 cells was detected by immunofluorescence. The expression of MIP-1α, a marker of microglial activation, was detected by ELISA. The nuclear translocation of NF-κB p65 was detected by immunofluorescence. The expression of proinflammatory cytokines was detected by ELISA. Western blotting was used to detect the expression of autophagy-related proteins. Apoptosis of MN9D cells was detected after coculture of BV-2 supernatant with MN9D. Results: The expression of MALAT1 and α-synuclein was upregulated, while the expression of miR-23b-3p was downregulated in damaged MN9D cells, resulting in cell apoptosis. MALAT1 can negatively regulate the expression of miR-23b-3p, while miR-23b-3p negatively regulates the expression of α-synuclein. α-synuclein can enter BV-2 cells through cell phagocytosis. Coculture of BV-2 cells with α-synuclein or with MN9D supernatant overexpressing MALAT1 resulted in a decrease in the autophagy level of BV-2 cells and an inflammatory reaction. However, miR-23b-3p mimics and knockdown of α-synuclein reversed the effect of MALAT1 on autophagy and the inflammatory response of BV-2 cells. In addition, after coculture of BV-2 cells with α-synuclein, the level of autophagy further decreased when 3-MA was added, while the opposite result occurred when RAPA was added. After coculture of α-synuclein-treated BV-2 cell supernatant with MN9D cells, autophagy-impaired BV-2 promoted the apoptosis of MN9D cells, and 3-MA aggravated the autophagy disorder of BV-2 and further promoted the apoptosis of MN9D cells, while RAPA reversed the autophagy disorder of BV-2 and alleviated the apoptosis of MN9D cells. Conclusion: MALAT1 can promote α-synuclein expression by regulating miR-23b-3p, thereby inducing microglial autophagy disorder and an inflammatory response leading to apoptosis of dopaminergic neurons. This newly discovered molecular mechanism may provide a potential target for the treatment of PD.
Asunto(s)
MicroARNs , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , ARN Largo no Codificante , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Apoptosis , Autofagia , Neuronas Dopaminérgicas , Microglía/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Parkinson/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , RatonesRESUMEN
This study evaluated the repair effects of Clostridium butyricum (CBX 2021) on the antibiotic (ABX)-induced intestinal dysbiosis in mice by the multi-omics method. Results showed that ABX eliminated more than 90% of cecal bacteria and also exerted adverse effects on the intestinal structure and overall health in mice after 10 days of the treatment. Of interest, supplementing CBX 2021 in the mice for the next 10 days colonized more butyrate-producing bacteria and accelerated butyrate production compared with the mice by natural recovery. The reconstruction of intestinal microbiota efficiently promoted the improvement of the damaged gut morphology and physical barrier in the mice. In addition, CBX 2021 significantly reduced the content of disease-related metabolites and meanwhile promoted carbohydrate digestion and absorption in mice followed the microbiome alternation. In conclusion, CBX 2021 can repair the intestinal ecology of mice damaged by the antibiotics through reconstructing gut microbiota and optimizing metabolic functions.
RESUMEN
AIMS: Naringin, a flavonoid present in citrus fruits, has been known for the capacity to reduce lipid synthesis and anti-inflammatory. In this study, we investigated whether naringin increases lipolysis and fatty acid ß-oxidation to change fat deposition. METHODS: In in vivo experiment, obese adult mice (20-weeks-old, n = 18) were divided into control group fed with normal diet and naringin-treated group fed with naringin-supplemented diet (5 g/kg) for 60 days, respectively. In in vitro experiment, differentiated 3T3-L1 adipocytes were treated for four days with or without naringin (100 µg/mL). RESULTS: Supplementing naringin significantly reduced the body weight, abdominal fat weight, blood total cholesterol content of mice, but did not affect food intake. In addition, naringin decreased levels of pro-inflammatory factors in adipose tissue including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and monocyte chemotactic protein 1 (MCP-1). Naringin increased the expression of AMP-activated protein kinase (AMPK), a key factor in cellular energy metabolism, and raised the ratio of p-AMPK/AMPK in mouse liver tissue. The protein expression of hormone-sensitive lipase (HSL), phospho-HSL563 (p-HSL563), p-HSL563/HSL, and adipocyte triglyceride lipase (ATGL) was significantly increased in the adipose tissue of naringin-treated mice. Furthermore, naringin enhanced the expression of fatty acid ß-oxidation genes, including carnitine palmitoyl transferase 1 (CPT1), uncoupling protein 2 (UCP2), and acyl-coenzyme A oxidase 1 (AOX1) in mouse adipose tissue. In in vitro experiment, similar findings were observed in differentiated 3T3-L1 adipocytes with naringin treatment. The treatment remarkably reduced intracellular lipid content, increased the number of mitochondria and promoted the gene expression of HSL, ATGL, CPT1, AOX1, and UCP2 and the phosphorylation of HSL protein. CONCLUSION: Naringin reduced body fat in obese mice and lipid content in differentiated 3T3-L1 adipocytes, which was associated with enhanced AMPK activation and upregulation of the expression of the lipolytic genes HSL, ATGL, and ß-oxidation genes CPT1, AOX1, and UCP2.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Lipólisis , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Esterol Esterasa/metabolismo , Lipasa , Ácidos Grasos , Lípidos , Células 3T3-L1RESUMEN
As a potential prebiotic, soybean oligosaccharides (SBOS) can improve animal health by modulating gut microbiota. The aim of this study was to investigate the different effects of supplementing SBOS and supplementing SBOS plus probiotic on the growth and health of pigs. Three groups of growing pigs (n = 12) were fed with basal diet (Control), basal diet + 0.5% SBOS (SBOS), or basal diet +0.5% SBOS + 0.1% compound probiotics (SOP) for 42 days. Results showed that SBOS and SOP treatments had positive effects on the pigs in the experiment, and the latter was more effective. Compared with the control pigs, the average daily gain of SBOS group and SOP group slightly increased, SOP significantly increased the serum levels of growth hormone and thyroid hormone T3. Importantly, serum concentrations of immunoglobulin (IgA, IgG and IgM), total antioxidant capacity and superoxide dismutase in both treatments were increased significantly, SOP group most. Moreover, the faecal odour compounds of pigs, especially skatole, were significantly reduced by the treatments. Additionally, SOP significantly increased the diversity and richness of the faecal microbiota, both the treatments increased genera of norank_f_Muribaculaceae and Ruminococcaceae but reduced Lactobacillus. Correlation analysis indicated that Lactobacillus was significantly positively correlated with odour compounds, while Ruminococcaceae was the opposite. Conclusively, synbiotics combined with SBOS and probiotics had stronger promotion effects on the growth and health of pigs.
Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Probióticos , Porcinos , Animales , Glycine max , Odorantes , Probióticos/farmacología , Oligosacáridos/farmacología , Dieta/veterinaria , Lactobacillus , Alimentación Animal/análisisRESUMEN
OBJECTIVE: This study sought to evaluate the feasibility of multifunctional gastrodin (GAS)-containing nano-drug carrier system against cerebral ischemia-reperfusion injury (CIRI). METHODS: The drug-loaded nanocomposite (Au-G5.NHAc-PS/GAS) with certain encapsulation efficiency (EE) was prepared by physical adsorption method using different proportions of GAS and drug-carrying system (Au-G5.NHAc-PS). High-performance liquid chromatography was used to determine the drug loading and EE. Cultured rat astrocytes and hypothalamic neurons were assigned into four groups: PBS, Au-G5.NHAc-PS, Au-G5.NHAc-PS/GAS, and GAS. CCK-8 assay, flow cytometry, and quantitative real-time PCR were performed to examine the cell viability, apoptosis, and the expression of tumor necrosis factor-α (TNF-α), IL-1ß, and IL-6 in the astrocytes and hypothalamic neurons, respectively. Cellular uptake of GAS and Au-G5.NHAc-PS/GAS was analyzed by using Hoechst 33342 staining. The animal model with focal cerebral ischemia was generated by middle cerebral artery occlusion (MCAO) in healthy male Sprague Dawley (SD) rats, and pathological changes of brain tissue and major organs in the rats were identified by hematoxylin and eosin (HE) staining. Apoptosis in rat astrocytes and hypothalamic neurons was detected by TUNEL staining and flow cytometry. RESULTS: Au-G5.NHAc-PS had a spherical shape with a uniform size of 157.3 nm. Among the nanoparticles, Au-G5.NHAc-PS/GAS with an EE of 70.3% displayed the best release delay effect. Moreover, we observed that in vitro cytotoxicity and cellular uptake of Au-G5.NHAc-PS/GAS were higher than those of GAS, whereas the expression of TNF-α, IL-1ß, and IL-6 was significantly downregulated in Au-G5.NHAc-PS/GAS group as compared to G5.NHAc-PS group. Notably, HE staining revealed that although Au-G5.NHAc-PS/GAS had no toxic and side effects on the main organs of rats, it alleviated the damage of brain tissue in the MCAO rats. Besides, Au-G5.NHAc/GAS markedly reduced MCAO-induced apoptosis. CONCLUSION: Au-G5.NHAc-PS showed favorable surface morphology, sustained drug release ability, no measurable toxicity, and good biocompatibility, indicating that GAS exerts anti-inflammatory and antiapoptotic effects on CIRI.
Asunto(s)
Isquemia Encefálica , Dendrímeros , Nanopartículas del Metal , Daño por Reperfusión , Masculino , Ratas , Animales , Oro/química , Dendrímeros/química , Factor de Necrosis Tumoral alfa , Interleucina-6 , Nanopartículas del Metal/química , Ratas Sprague-Dawley , Sistemas de Liberación de Medicamentos , Daño por Reperfusión/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral MediaRESUMEN
The roles of the microbe-gut-brain axis in metabolic homeostasis, development, and health are well-known. The hypothalamus integrates the higher nerve center system and functions to regulate energy balance, feeding, biological rhythms and mood. However, how the hypothalamus is affected by gut microbes in mammals is unclear. This study demonstrated differences in hypothalamic gene expression between the germ-free (GF) pigs and pigs colonized with gut microbiota (CG) by whole-transcriptome analysis. A total of 938 mRNAs, 385 lncRNAs and 42 miRNAs were identified to be differentially expressed between the two groups of pigs. An mRNA-miRNA-lncRNA competing endogenous RNA network was constructed, and miR-22-3p, miR-24-3p, miR-136-3p, miR-143-3p, and miR-545-3p located in the net hub. Gene function and pathway enrichment analysis showed the altered mRNAs were mainly related to developmental regulation, mitochondrial function, the nervous system, cell signaling and neurodegenerative diseases. Notably, the remarkable upregulation of multiple genes in oxidative phosphorylation enhanced the GF pigs' hypothalamic energy expenditure. Additionally, the reduction in ATP content and the increase in carnitine palmitoyl transterase-1 (CPT1) protein level also confirmed this fact. Furthermore, the hypothalamic cell apoptosis rate in the CG piglets was significantly higher than that in the GF piglets. This may be due to the elevated concentrations of pro-inflammatory factors produced by gut bacteria. The obtained results collectively suggest that the colonization of gut microbes has a significant impact on hypothalamic function and health.
RESUMEN
Skeletal muscle satellite cells (SMSCs), which are multifunctional muscle-derived stem cells, can differentiate into adipocytes. Long-chain non-coding RNA (lncRNA) has diverse biological functions, including the regulation of gene expression, chromosome silencing, and nuclear transport. However, the regulatory roles and mechanism of lncRNA during adipogenic transdifferentiation in muscle cells have not been thoroughly investigated. Here, porcine SMSCs were isolated, cultured, and induced for adipogenic differentiation. The expressions of lncRNA and mRNA at different time points during transdifferentiation were analysed using RNA-seq analysis. In total, 1005 lncRNAs and 7671 mRNAs showed significant changes in expression at differential differentiation stages. Time-series expression analysis showed that the differentially expressed (DE) lncRNAs and mRNAs were clustered into 5 and 11 different profiles with different changes, respectively. GO, KEGG, and REACTOME enrichment analyses revealed that DE mRNAs with increased expressions during the trans-differentiation were mainly enriched in the pathways for lipid metabolism and fat cell differentiation. The genes with decreased expressions were mainly enriched in the regulation of cell cycle and genetic information processing. In addition, 1883 DE mRNAs were regulated by 193 DE lncRNAs, and these genes were related to the controlling in cell cycle mainly. Notably, three genes in the fatty acid binding protein (FABP) family significantly and continuously increased during trans-differentiation, and 15, 13, and 11 lncRNAs may target FABP3, FABP4, and FABP5 genes by cis- or trans-regulation, respectively. In conclusion, these studies identify a set of new potential regulator for adipogenesis and cell fate and help us in better understanding the molecular mechanisms of trans-differentiation.
RESUMEN
An increasing number of observations have indicated that the activation of inflammatory processes is involved in the pathogenesis of epilepsy. As an effective adjunctive therapy for medically intractable seizures, vagus nerve stimulation (VNS) is thought to interact with the inflammatory process to play an antiepileptic role. In this study, we examined the levels of multiple cytokine in focal brain tissue and peripheral blood to determine whether the antiepileptic effect of chronic VNS is related to the expression of cytokines. We observed that the frequency and duration of seizures significantly decreased in epileptic rats after two weeks of chronic VNS treatment. Pathological staining showed that the number of neural cells in the hippocampus was higher in the Epi + VNS group than in the Epi group, indicating that chronic VNS had a significant neuroprotective effect on epileptic rats. After comparing the expression of 9 cytokines, we found that the levels of the proinflammatory cytokines IL-6, IL-1ß and CXCL-1 in the hippocampus were significantly increased in the Epi group, while these cytokines were significantly decreased in the Epi + VNS group. Moreover, the level of the anti-inflammatory cytokine IL-13 was found to be reduced in Epi rats, while its levels were increased after VNS treatment. However, these changes in cytokine expression were not found in the hypothalamus or peripheral blood. These results suggest that the antiepileptic mechanism of VNS may work by inhibiting the activation of inflammatory processes in the epileptogenic focus.