Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10865, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740875

RESUMEN

Shear failure of rock bridges is an important process in geological phenomena, including landslides and earthquakes. However, the progressive failure of natural rock bridges has not yet been fully understood. In this work, we carried out direct shearing experiments on both granite and marble rock bridges, and applied acoustic emission (AE) monitoring throughout the experiments. With the mechanical curves and the evolution of AE activity (including AE energy rate and b value), the failure of rock bridges can be divided into three pre-failure phases and one ultimate failure phases. We analyzed the effects of normal stress and lithology on the pre-failure phases. We noted that with the increasing of normal stress, the length of stable cracking phase decreases and the length of unstable cracking phase slightly increases, except for marble rock bridges at high normal stress, which maintains a great proportion of stable cracking phase that possibly results from the great off-fault damage. Increasing normal stress also suppresses the dilation of granite rock bridges, but has a different effect on marble rock bridges, which also suggests the effect of lithology on failure modes.

2.
Materials (Basel) ; 17(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38473638

RESUMEN

The differences in geomechanical properties and the uncertainty in the spatial distribution of Bimrock pose significant challenges to the construction and disaster prediction of geotechnical engineering. To clarify the geomechanical characteristics of Bimrock, this paper summarizes the basic concepts and classification methods of Bimrock at home and abroad. It discusses the methods and characteristics of determining the geometric features of Bimrock blocks and explores the influencing factors and laws of failure modes and strength under different stress states of Bimrock. The study finds that the failure mode of Bimrock is mainly influenced by factors such as block proportion, degree of welding between blocks and matrix, strength ratio between blocks and matrix, and geometric properties of blocks. Among these factors, block proportion is the most significant, and the degree of welding is a controlling factor. However, due to the complexity of Bimrock structures, there is a lack of applicable methods and mechanical models for the evaluation of geomechanical characteristics of Bimrock in engineering practice. This article also explores the influence and research methods of the geological characteristics of Bimrock in slope and tunnel engineering and, finally, provides prospects for the future research trends relating to Bimrock.

3.
Materials (Basel) ; 15(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499940

RESUMEN

It has been recognized that the anisotropic structures dominate the deformation and strength properties of laminated rock masses. The resultant strength anisotropy is strongly affected by confining pressures beyond anisotropic structures. Nevertheless, the effects of confinement are inconsistent among existing experiments and not fully understood. This study focuses on the effects of confining pressure on strength anisotropy through theoretical derivation together with experimental results analysis. The variations in the possibility of anisotropic structural plane dominant failure and strength anisotropy degree under different confining pressures are discussed. The different types of anisotropic structural planes, i.e., the fresh contact discontinuity or soft, thick layer, are found as the key factor resulting in different confinement effects. The strength anisotropy weakens gradually and vanishes eventually as confining stress increases for the anisotropic rock mass with the structural plane of fresh contact discontinuity. On the other hand, the strength does not vanish at very high confining stress and the anisotropic strength difference even rises as confining stress increases for the anisotropic rock mass with the anisotropic structural plane of the soft layer. This study improves the understanding of anisotropic rock mass mechanical behavior, especially at high confining stress, and may promote the development of excavation and supporting techniques for underground projects.

4.
Materials (Basel) ; 15(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36556563

RESUMEN

The diagenesis of welded tuffs is a process in which volcanic debris undergoes degassing, compaction, and quenching, and vitreous rheologic, which indicates that the welding occurred in a high-temperature, high-pressure diagenetic environment and that different temperatures and pressures result in different degrees of welding in the welded tuffs, which can also result in differences in the mechanical properties of the rock. In this study, based on petrographic identification, mineral composition analysis, and pore structure characterization, uniaxial compression combined with linear accelerator CT and Brazilian splitting tests was carried out to investigate the influence of the welding degree on the strength and failure modes. The test results showed that although they had almost similar mineral composition and porosity, the uniaxial compression strength and tensile strength of the strongly welded tuffs were greater than that of the weakly welded tuffs. Their failure modes were also different. Fractures in the weakly welded tuffs developed gradually, while the strongly welded tuffs showed a higher brittleness with sudden failure. The results of this study shed light on the influence of the diagenetic environment on the mechanical properties of rock from a geological perspective and can provide a mechanical basis for rockfall risk evaluation in scenic areas of welded tuff.

5.
Exp Dermatol ; 31(12): 1932-1938, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36017595

RESUMEN

Opsin 3 (OPN3), a member of the light-sensitive, retinal-dependent opsin family, is widely expressed in a variety of human tissues and plays a multitude of light-dependent and light-independent roles. We recently identified five missense variants of OPN3, including p. I51T, p. V134A, p. V183I, p. M256I and p. C331Y, in human melanocytic tumours. However, it remains unclear how these OPN3 variants affect OPN3 protein structure and function. Herein, we conducted structural and functional studies of these variant proteins in OPN3 by molecular docking and molecular dynamics simulations. Moreover, we performed in vitro fluorescence calcium imaging to assess the functional properties of five single-nucleotide variant (SNV) proteins using a site-directed mutagenesis method. Notably, the p. I51T variant was not able to effectively dock with 11-cis-retinal. Additionally, in vitro, the p. I51T SNVs failed to induce any detectable changes in intracellular Ca2+ concentration at room temperature. Taken together, these results reveal that five SNVs in the OPN3 gene have deleterious effects on protein structure and function, suggesting that these mutations, especially the p. I51T variant, significantly disrupt the canonical function of the OPN3 protein. Our findings provide new insight into the role of OPN3 variants in the loss of protein function.


Asunto(s)
Melanocitos , Opsinas de Bastones , Humanos , Simulación del Acoplamiento Molecular , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Melanocitos/metabolismo , Opsinas/genética , Mutación Missense
6.
PLoS One ; 17(1): e0262456, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35073348

RESUMEN

Generally, a loess high fill project will undergo a time-dependent deformation and settlement process for a long time after the initial fill. Understanding the creeping behaviour of compacted loess is an important part of determining the stability of a compacted loess foundation. To study the creep behaviour of remoulded loess under different levels of compactness, we performed triaxial shear and triaxial creep tests using Q2 loess specimens obtained from the new district of Yan'an city. Based on laboratory test results, the triaxial shear and creep characteristics of remoulded loess under different levels compactness are summarised. The regularity of instantaneous strain, creep strain, total accumulated strain and initial shear modulus were analysed and the relationship between the compactness and long-term strength of remoulded loess is provided. It was found that the remoulded loess becomes harder and its long-term strength increases with an increase in compactness. Furthermore, we propose a new creep model (HD), based on the hardening-damage mechanism, and have derived one-dimensional (1D) and three-dimensional (3D) creep equations based on this new creep model. This new creep model is flexible enough to fit the typical creep test curves of remoulded loess, while perfectly describing the tertiary creep stage. Finally, the sensitivity of the HD creep model parameters was analysed; the results indicate that the parameters denoted as α, γ, and ß significantly affect the morphological changes and various stage characteristics are represented by the creep curve.

7.
Artículo en Inglés | MEDLINE | ID: mdl-33977038

RESUMEN

The 18th International Symposium on Geo-disaster Reduction (ISGdR) was held on 20-22 November in Beijing, China, focusing on the theme of "Improving the Relationship between Geoenvironment and Society". In this symposium, a high-level Gu Dezhen Lecture and a number of keynote and invited lectures provided a platform for scientists, industrial professionals and students to share their researches and exchange novel ideas on geo-disaster reduction in a hybrid way of offline and online.

8.
Materials (Basel) ; 13(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198285

RESUMEN

Characterization of the tensile mechanical behaviors of rocks under dynamic loads is of great significance for the practical engineering. However, thus far, its micromechanics have rarely been studied. This paper micromechanically investigated the compression-induced tensile mechanical behaviors of the crystalline rock using the grain-based model (GBM) by universal distinct element code (UDEC). Results showed that the crystalline rock has the rate- and heterogeneity-dependency of tensile behaviors. Essentially, dynamic Brazilian tensile strength increased in a linear manner as the loading rate increased. With the size distribution and morphology of grain-scale heterogeneity weakened, it increased, and this trend was obviously enhanced as the loading rate increased. Additionally, the rate-dependent characteristic became strong with the grain heterogeneity weakened. The grain heterogeneity prominently affected the stress distribution inside the synthetic crystalline rock, especially in the mixed compression and tension zone. Due to heterogeneity, there were tensile stress concentrations (TSCs) in the sample which could favor microcracking and strength weakening of the sample. As the grain heterogeneity weakened or the loading rate increased, the magnitude of the TSC had a decreasing trend and there was a transition from the sharp TSC to the smooth tensile stress distribution zone. The progressive failure of the crystalline rock was notably influenced by the loading rate, which mainly represented the formation of the crushing zone adjacent to two loading points. Our results are meaningful for the practical engineering such as underground protection works from stress waves.

9.
Materials (Basel) ; 13(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105562

RESUMEN

The shear strength characteristics of rock masses containing non-persistent discontinuities are strongly affected by discontinuities and rock bridges. The linear Jennings criterion cannot reflect the nonlinear mechanical behavior during progressive failure of rock masses with non-persistent discontinuities. In this study, a new nonlinear shear strength criterion was developed. First of all, a series of shear test data about artificial rock mass samples were collected on the basis of the published literatures, and five types of samples were differentiated according to the positions of discontinuities. After that, a new nonlinear shear strength criterion was proposed by introducing two correction coefficients A and B into the basic form of the Jennings criterion, which could correct the weight of the cohesion and the internal friction coefficient of rock bridges respectively. Then, the new criterion was determined by fitting the basic form of the Jennings criterion with the laboratory data. It was found that the parameters A and B had a nonlinear exponential and negative exponential relation with the connectivity rate respectively. It indicated that both the cohesion and the internal friction coefficient estimated by the new criterion were superior to those estimated by the Jennings criterion. Compared with the linear Jennings criterion, the new nonlinear shear strength criterion had a better applicability.

10.
Materials (Basel) ; 13(18)2020 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-32900005

RESUMEN

This paper microscopically investigated progressive failure characteristics of brittle rock under high-strain-rate compression using the bonded particle model (BPM). We considered the intact sample and the flawed sample loaded by split Hopkinson pressure bar respectively. Results showed that the progressive failure characteristics of the brittle rock highly depended on the strain rate. The intact sample first experienced in microcracking, then crack coalescing, and finally splitting into fragments. The total number of the micro cracks, the proportion of the shear cracks, the number of fragments and the strain at the peak stress all increased with the increasing strain rate. Also, a transition existed for the failure of the brittle rock from brittleness to ductility as the strain rate increased. For the flawed sample, the microcracking initiation position and the types of the formed macro cracks were influenced by the flaw angle in the initial stage. However, propagation of these early-formed macro cracks were prohibited in the later stages. New micro cracks were produced and then coalesced into diagonal macro cracks which could all form 'X'-shape failure configuration regardless of the incline angle of the flaw. We explored micromechanics on progressive failure characteristics of the brittle rock under dynamic loads.

11.
Sci Rep ; 10(1): 8511, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444623

RESUMEN

The pore structure is one of the most important properties of soil, which can directly affect the other properties such as water content, permeability and strength. It is of great significance to study the soil pore structure for agricultural cultivation, water and soil conservation and engineering construction. This paper investigates the 3D pore characterization of intact loess and four kinds of compacted loess (with different dry density) in northwest China. Micro scale computed tomography and mercury intrusion porosimetry tests were performed to get the porosity, specific surface area, pore size distribution, connected pores content and isolated pores content of different samples. Results show that the intact loess has more connected pores than the compacted loess, and the compacted loess whose dry density appears to be modelled well still have different pore structure with the intact loess. In addition, as the compactness increasing, the large pores (>13 µm) were firstly broken into medium pores (8~13 µm) and some small pores (<8 µm) until the pore structure was close to the natural structure of the intact loess, after that medium pores began to be broken into small pores.

12.
Materials (Basel) ; 10(4)2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28772738

RESUMEN

In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool-Fast Lagrangian Analysis of Continua in three Dimensions (FLAC3D), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter µ and the coefficient of variance (hcv, the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and hcv. The range of hcv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a consistent tendency between the local stress difference and the AE events process.

13.
Materials (Basel) ; 10(1)2016 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-28772372

RESUMEN

This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM). A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i) initial compaction stage; (ii) crushing stage; and (iii) crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV), of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.

14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 30(6): 1209-12, 2013 Dec.
Artículo en Chino | MEDLINE | ID: mdl-24645598

RESUMEN

In order to study the light propagation in biological tissue, we analyzed the divergent beam propagation in turbid medium. We set up a Monte Carlo simulation model for simulating the divergent beam propagation in a semi-infinite bio-tissue. Using this model, we studied the absorbed photon density with different tissue parameters in the case of a divergent beam injecting the tissue. The simulation results showed that the rules of optical propagation in the tissue were found and further the results also suggested that the diagnosis and treatment of the light could refer to the rules of optical propagation.


Asunto(s)
Modelos Biológicos , Método de Montecarlo , Simulación por Computador , Luz , Óptica y Fotónica , Dispersión de Radiación
15.
Artículo en Chino | MEDLINE | ID: mdl-18396707

RESUMEN

OBJECTIVE: To investigate corresponding relation between structure change of the femoral head with "crescent sign" and stress exerted on the avascular necrosis of femoral head, to explore the mechanism of the "crescent sign" formation. METHODS: From March 1998 to April 2003, the femoral heads of 18 hips in 16 cases having osteonecrosis and "crescent sign" in X-ray film before total hip arthroplasty, were collected. General and coronal section plane morphology of the femoral heads were observed. The principle of effective stress and stress concentration theory were used to explain the phenomena and structure changes in osteonecrosis of the femoral head. RESULTS: Cancellous bone existed as a three-dimensional, interconnected network of trabeculae rods and plates, with 50%-90% of porosity and 20-30 mmHg bone marrow pressure. According to the definition of porous media, bones especially cancellous bone was a kind of solid and liquid two phases porous media. Cross-sectional structure changes in the junction between subchondral plate and cancellous were the place where stress concentrated. The principle of effective stress and stress concentration theory could explain the phenomena and their relationship that occurred in avascular necrosis of the femoral head. CONCLUSION: The "crescent sign" starts in an area of very focal resorption in the subchondral plate laterally and peripherally. The focal resorption in the subchondral plate breaks the continuity of subchondral plate and causes stress concentration in the resorption region. The concentrated stress accumulates in the junction between subchondral plate and unrepaired necrotic cancellous bone brings on the fracture right below the subchondral plate. The focal resorption of the subchondral plate also provides a pathway for the pore water in the unrepaired necrotic bone skeleton to outflow, therefore cause effective stress increase and unrepaired necrotic bone skeleton be compacted by increased effective stress applied on unrepaired necrotic cancellous bone skeleton, and results in the volume decrease of unrepaired necrotic cancellous bone and the formation of cavum below the subchondral plate. The cavum shows "crescent sign" in the X-ray film.


Asunto(s)
Cartílago Articular/patología , Necrosis de la Cabeza Femoral/patología , Cabeza Femoral/patología , Articulación de la Cadera/patología , Adulto , Fenómenos Biomecánicos , Cartílago Articular/diagnóstico por imagen , Femenino , Cabeza Femoral/diagnóstico por imagen , Necrosis de la Cabeza Femoral/diagnóstico por imagen , Articulación de la Cadera/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Radiografía , Estrés Mecánico
16.
Appl Opt ; 43(3): 530-6, 2004 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-14765910

RESUMEN

A method of measuring the refractive indices of minute samples by analyzing capillary interferometry is introduced. With the interference theory of light, the intensity distribution of an interference fringe pattern formed by a cylindrical tube of a capillary is obtained, and the influence of some parameters on the fringes are discussed. The measurement accuracy and its relative problems are analyzed.

17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 24(4): 392-5, 2004 Apr.
Artículo en Chino | MEDLINE | ID: mdl-15766138

RESUMEN

The CCD experimental setup and the CCD image analysis system that were developed by using C Language were presented, and the spatially resolved diffusion reflectance and transmittance of porcine muscle and fat were determined by using CCD experimental setup. The experimental results were compared with those of Monte Carlo simulations and those of the two models based on diffusion theory, and we found good agreement between theory and experiment for the range from the beam center to 12 mm. It i s shown that the CCD experimental setup and the CCD image analysis system can be used to measure the spatially resolved diffusion reflectance and transmittance of biological tissues, and this work offers the experimental bases for noninvasive and fast measurement of optical parameters of biological tissues.


Asunto(s)
Diseño Asistido por Computadora/instrumentación , Difusión , Dispositivos Ópticos/estadística & datos numéricos , Dispersión de Radiación , Algoritmos , Animales , Diseño de Equipo/métodos , Luz , Matemática , Piel , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...