Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Front Immunol ; 15: 1427661, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015570

RESUMEN

Background: Osteosarcoma primarily affects children and adolescents, with current clinical treatments often resulting in poor prognosis. There has been growing evidence linking programmed cell death (PCD) to the occurrence and progression of tumors. This study aims to enhance the accuracy of OS prognosis assessment by identifying PCD-related prognostic risk genes, constructing a PCD-based OS prognostic risk model, and characterizing the function of genes within this model. Method: We retrieved osteosarcoma patient samples from TARGET and GEO databases, and manually curated literature to summarize 15 forms of programmed cell death. We collated 1621 PCD genes from literature sources as well as databases such as KEGG and GSEA. To construct our model, we integrated ten machine learning methods including Enet, Ridge, RSF, CoxBoost, plsRcox, survivalSVM, Lasso, SuperPC, StepCox, and GBM. The optimal model was chosen based on the average C-index, and named Osteosarcoma Programmed Cell Death Score (OS-PCDS). To validate the predictive performance of our model across different datasets, we employed three independent GEO validation sets. Moreover, we assessed mRNA and protein expression levels of the genes included in our model, and investigated their impact on proliferation, migration, and apoptosis of osteosarcoma cells by gene knockdown experiments. Result: In our extensive analysis, we identified 30 prognostic risk genes associated with programmed cell death (PCD) in osteosarcoma (OS). To assess the predictive power of these genes, we computed the C-index for various combinations. The model that employed the random survival forest (RSF) algorithm demonstrated superior predictive performance, significantly outperforming traditional approaches. This optimal model included five key genes: MTM1, MLH1, CLTCL1, EDIL3, and SQLE. To validate the relevance of these genes, we analyzed their mRNA and protein expression levels, revealing significant disparities between osteosarcoma cells and normal tissue cells. Specifically, the expression levels of these genes were markedly altered in OS cells, suggesting their critical role in tumor progression. Further functional validation was performed through gene knockdown experiments in U2OS cells. Knockdown of three of these genes-CLTCL1, EDIL3, and SQLE-resulted in substantial changes in proliferation rate, migration capacity, and apoptosis rate of osteosarcoma cells. These findings underscore the pivotal roles of these genes in the pathophysiology of osteosarcoma and highlight their potential as therapeutic targets. Conclusion: The five genes constituting the OS-PCDS model-CLTCL1, MTM1, MLH1, EDIL3, and SQLE-were found to significantly impact the proliferation, migration, and apoptosis of osteosarcoma cells, highlighting their potential as key prognostic markers and therapeutic targets. OS-PCDS enables accurate evaluation of the prognosis in patients with osteosarcoma.


Asunto(s)
Apoptosis , Neoplasias Óseas , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/mortalidad , Osteosarcoma/patología , Humanos , Apoptosis/genética , Pronóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/mortalidad , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Aprendizaje Automático , Perfilación de la Expresión Génica , Transcriptoma , Proliferación Celular/genética , Bases de Datos Genéticas , Biología Computacional/métodos
2.
Front Psychiatry ; 15: 1392958, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751414

RESUMEN

Background: Pediatric cerebral palsy (CP) is a non-progressive brain injury syndrome characterized by central motor dysfunction and insufficient brain coordination ability. The etiology of CP is complex and often accompanied by diverse complications such as intellectual disability and language disorders, making clinical treatment difficult. Despite the availability of pharmacological interventions, rehabilitation programs, and spasticity relief surgery as treatment options for CP, their effectiveness is still constrained. Electroacupuncture (EA) stimulation has demonstrated great improvements in motor function, but its comprehensive, objective therapeutic effects on pediatric CP remain to be clarified. Methods: We present a case of a 5-year-old Chinese female child who was diagnosed with CP at the age of 4. The patient exhibited severe impairments in motor, language, social, and cognitive functions. We performed a 3-month period of EA rehabilitation, obtaining resting state functional magnetic resonance imaging (rs-fMRI) of the patient at 0 month, 3 months and 5 months since treatment started, then characterized brain functional connectivity patterns in each phase for comparison. Results: After a 12-month follow-up, notable advancements were observed in the patient's language and social symptoms. Changes of functional connectivity patterns confirmed this therapeutic effect and showed specific benefits for different recovery phase: starting from language functions then modulating social participation and other developmental behaviors. Conclusion: This is a pioneering report demonstrating the longitudinal effect of EA stimulation on functional brain connectivity in CP patients, suggesting EA an effective intervention for developmental disabilities (especially language and social dysfunctions) associated with pediatric CP.

3.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753510

RESUMEN

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Asunto(s)
Proteínas de Neoplasias , Multimerización de Proteína , Molécula de Interacción Estromal 1 , Humanos , Sitios de Unión , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Simulación de Dinámica Molecular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Unión Proteica , Dominios Proteicos , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/química
4.
Gels ; 10(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38534595

RESUMEN

Ethylhexyl methoxycinnamate (EHMC) is frequently employed as a photoprotective agent in sunscreen formulations. EHMC has been found to potentially contribute to health complications as a result of its propensity to produce irritation and permeate the skin. A microgel carrier, consisting of poly(ethylene glycol dimethacrylate) (pEDGMA), was synthesized using interfacial polymerization with the aim of reducing the irritation and penetration of EHMC. The thermogravimetric analysis (TGA) indicated that the EHMC content accounted for 75.72% of the total composition. Additionally, the scanning electron microscopy (SEM) images depicted the microgel as exhibiting a spherical morphology. In this study, the loading of EHMC was demonstrated through FTIR and contact angle tests. The UV resistance, penetration, and skin irritation of the EHMC-pEDGMA microgel were additionally assessed. The investigation revealed that the novel sunscreen compound, characterized by limited dermal absorption, had no irritant effects and offered sufficient protection against ultraviolet radiation.

5.
Se Pu ; 42(2): 217-223, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38374603

RESUMEN

Rapid industrial and agricultural developments in China have led to the wide use and discharge of chemical products and pesticides, resulting in extensive residues in environmental media. These residues can enter the human body through various pathways, leading to high exposure risks and health hazards. Because the human body is exposed to a variety of chemical pollutants, accurately quantifying the exposure levels of these pollutants in the human body and evaluating their health risks are of great importance. In this study, the serum concentrations of 97 typical chemical pollutants of 60 adults in central China were simultaneously determined using solid-phase extraction coupled with gas chromatography-tandem mass spectrometry (SPE-GC-MS/MS). In this method, 200 µL of a serum sample was mixed with 10 µL of an isotope-labeled internal standard solution. The sample was vortexed and refrigerated overnight at 4 ℃. Each sample was then deproteinized by the addition of 200 µL of 15% formic acid aqueous solution and vortexed. The serum sample was loaded into a preconditioned Oasis® PRiME HLB SPE cartridge and rinsed with 3 mL of methanol-water (6∶1, v/v). The SPE cartridge was subsequently vacuumed. The analytes were eluted with 3 mL of dichloromethane followed by 3 mL of n-hexane. The eluent was concentrated to near dryness under a gentle nitrogen stream and reconstituted with 100 µL of acetone. The samples were determined by GC-MS/MS and separated on a DB-5MS capillary column (30 m×0.25 mm×0.25 µm) with temperature programming. The column temperature was maintained at 70 ℃ for 2 min, increased at a rate of 25 ℃/min to 150 ℃, increased at a rate of 3 ℃/min to 200 ℃, and then held for 2 min. Finally, the column temperature was increased at a rate of 8 ℃/min to 300 ℃ and maintained at this temperature for 8 min. The samples were detected in multiple-reaction monitoring (MRM) mode and quantitatively analyzed using the internal standard method. Multiple linear regression models were used to analyze the effects of demographic characteristics, lifestyle habits, and diet on the concentrations of the chemical pollutants in the serum samples, and known biomonitoring equivalents (BEs) and human biomonitoring (HBM) values were combined to compute hazard quotients (HQs) and hazard indices (HIs) and evaluate the health risks of single and cumulative exposures to the chemical pollutants. The results showed that the main pollutants detected in human serum were organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The detection rates of eight pollutants, including hexachlorobenzene (HCB) (100%), pentachlorophenol (PCP) (100%), p,p'-dichlorodiphenylene (p,p'-DDE) (100%), PCB-138 (100%), PCB-153 (98.3%), ß-hexachlorocyclohexane (ß-HCH) (91.7%), fluorene (Flu) (85.0%), and anthracene (Ant) (75.0%), were greater than 70%. The serum levels of ß-HCH were higher in females than in males, and age was positively correlated with exposure to p,p'-DDE, PCB-138, PCB-153, and ß-HCH. Increased exposure levels to p,p'-DDE and ß-HCH may be associated with a high frequency of meat intake, whereas increased exposure level to PCP may be associated with a high frequency of vegetable intake. The serum HQ of PCP was greater than 1 in 6.7% of the samples, and no risk was observed for HCB and p,p'-DDE exposure in the study population. Approximately 28.3% of the study subjects had HI values greater than 1. Overall, the general adult population in this region is widely exposed to a wide range of chemical pollutants, and gender, age, and diet are likely to be the main factors influencing the concentration of chemical pollutants. The health risk of single and compound exposures to chemical pollutants should not be ignored.


Asunto(s)
Contaminantes Ambientales , Hexaclorociclohexano , Hidrocarburos Clorados , Pentaclorofenol , Plaguicidas , Bifenilos Policlorados , Adulto , Masculino , Femenino , Humanos , Contaminantes Ambientales/análisis , Diclorodifenil Dicloroetileno/análisis , Diclorodifenil Dicloroetileno/metabolismo , Hexaclorobenceno/análisis , Espectrometría de Masas en Tándem , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Bifenilos Policlorados/análisis , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Pentaclorofenol/análisis , Medición de Riesgo
6.
Environ Toxicol ; 39(5): 2908-2926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38299230

RESUMEN

BACKGROUND: Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD-related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction. METHOD: We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome-based CRC prognostic models. RESULT: Our integrated model successfully identified differentially expressed PCD-related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high-risk and low-risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis. CONCLUSION: The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Humanos , Pronóstico , Aprendizaje Automático , Neoplasias Colorrectales/genética
7.
Plants (Basel) ; 12(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38140439

RESUMEN

Salinity stress significantly hampers cotton seed germination and seedling growth. Employing plant growth regulators stands out as an effective strategy to mitigate salt stress. In this study, we assessed the impact of varying concentrations of natural composite salt conditions (0%, 0.6%, and 1.2%) on cotton seed germination, seedling growth, and physiology. Additionally, we explored the effects of compound sodium nitrophenolate (CSN: 2 mg·L-1 and 10 mg·L-1), 24-epibrassinolide (EBR: 0.02 mg·L-1 and 0.1 mg·L-1), and gibberellic acid (GA: 60 mg·L-1 and 300 mg·L-1), against a control (CK: distilled water) group. The results indicate that with an increase in the composite salt concentration, the germination potential (GP) and germination rate (GR) of cotton seeds gradually decrease. Simultaneously, the fresh weight and root vitality of seedlings also correspondingly decrease, while the degree of membrane lipid peroxidation increases. Under high-salt (1.2%) conditions, soaking treatments with CSN and EBR significantly enhance both GP (45-59% and 55-64%) and GR (30-33% and 39-36%) compared to the CK. However, the GA treatment does not increase the GP and GR of cotton. Moreover, under high-salt (1.2%) conditions, CSN and EBR treatments result in the increased activities of superoxide dismutase (56-66% and 71-80%), peroxidase (20-24% and 37-51%), and catalase (26-32% and 35-46%). Consequently, cotton exhibits a relatively good tolerance to natural composite salts. Soaking treatments with CSN and EBR effectively improve cotton germination by enhancing antioxidant enzyme activities, thereby strengthening cotton's tolerance to salt stress. These findings offer new insights for enhancing the salt tolerance of cotton.

8.
Sci Transl Med ; 15(717): eadd2712, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37820006

RESUMEN

Cancer immunotherapy has reshaped the landscape of cancer treatment. However, its efficacy is still limited by tumor immunosuppression associated with the excessive production of lactate by cancer cells. Although extensive efforts have been made to reduce lactate concentrations through inhibition of lactate dehydrogenase, such inhibitors disrupt the metabolism of healthy cells, causing severe nonspecific toxicity. We report herein a nanocapsule enzyme therapeutic based on lactate oxidase, which reduces lactate concentrations and releases immunostimulatory hydrogen peroxide, averting tumor immunosuppression and improving the efficacy of immune checkpoint blockade treatment. As demonstrated in a murine melanoma model and a humanized mouse model of triple-negative breast cancer, this enzyme therapeutic affords an effective tool toward more effective cancer immunotherapy.


Asunto(s)
Melanoma , Nanocápsulas , Animales , Ratones , Linfocitos T , Inmunoterapia , Melanoma/terapia , Lactatos , Microambiente Tumoral
9.
Ir J Med Sci ; 192(6): 2681-2687, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37414978

RESUMEN

PURPOSE: To investigate the value of serum free prostate-specific antigen density (fPSAD) in the diagnosis of prostate cancer (PCa). METHODS: The data of 558 patients who underwent transrectal ultrasound-guided prostate biopsy were retrospectively analyzed. According to the pathological results, the patients were divided into a PCa group and a benign prostatic hyperplasia (BPH) group. Receiver operating characteristic curves were plotted, based on which the sensitivity, specificity, Youden index, concordance, and kappa values of free prostate-specific antigen (fPSA), the free-to-total f/tPSA, prostate-specific antigen density (PSAD), the free-to-total (f/t)/PSAD ratio, and fPSAD were compared. The patients were divided into three groups by PSA levels (PSA < 4 ng/mL, PSA = 4-10 ng/mL, and PSA > 10 ng/mL), into three groups by age (age < 60 year, age = 60-80y, and age > 80 years), and into two groups by prostate volume (PV) (PV ≤ 80 mL and PV > 80 mL) to compare the sensitivity, specificity, and concordance of indicators. RESULTS: tPSA, PSAD, (f/t)/PSAD, and fPSAD had high accuracy in predicting PCa with AUC values of 0.820, 0.900, 0.846, and 0.867. fPSAD showed lower diagnostic sensitivity but significantly higher specificity and concordance for PCa than tPSA, f/tPSA, (f/t)/PSAD, or PSAD. Thus, fPSAD had the highest accuracy in the diagnosis of PCa. In the groups with different PSA, age, and PV stratification, the concordance of fPSAD was significantly higher (88.61%, 90.74%, and 90.38%) than that of other indicators. CONCLUSION: With the optimal cutoff value of 0.062, fPSAD has a higher diagnostic value for PCa than tPSA, f/tPSA, (f/t)/PSAD, and PSAD, and can well predict the risk of PCa, significantly improve the clinical diagnostic rate of PCa, and reduce unnecessary biopsy.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Masculino , Humanos , Persona de Mediana Edad , Antígeno Prostático Específico , Estudios Retrospectivos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Próstata/diagnóstico por imagen , Próstata/patología , Hiperplasia Prostática/diagnóstico , Curva ROC , Sensibilidad y Especificidad
10.
Opt Lett ; 48(13): 3591-3594, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390188

RESUMEN

Various approaches to implementing optical analog differentiation have been studied extensively and applied in edge-based image processing. Here, we report a topological optical differentiation scheme based on complex amplitude filtering, i.e., amplitude and spiral phase modulation in Fourier space. The isotropic and anisotropic multiple-order differentiation operations are demonstrated both theoretically and experimentally. Meanwhile, we also achieve multiline edge detection corresponding to the differential order for the amplitude and phase objects. This proof-of-principle work could open up new avenues for engineering a nanophotonic differentiator and realizing a more compact image-processing system.


Asunto(s)
Ingeniería , Procesamiento de Imagen Asistido por Computador
11.
BMC Gastroenterol ; 23(1): 207, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312022

RESUMEN

OBJECTIVE: To construct a survival prediction model for patients with TNM stage III hepatocellular carcinoma (HCC) to guide the clinical diagnosis and treatment of HCC patients and improve prognosis. METHODS: Based on data from patients with stage III (AJCC 7th TNM stage) recorded by the American Institute of Cancer Research from 2010 to 2013, risk factors affecting the prognosis were screened by Cox univariate and multivariate regression, line plots was constructed, and the credibility of the model was verified by Boostrap method. ROC operating curves, calibration curves and DCA clinical decision curves were used to evaluate the model, and Kaplan-Meier was used for survival analysis was used to evaluate the efficacy of the model. External survival data from patients newly diagnosed with stage III hepatocellular carcinoma during 2014-2015 were used to validate and fit the model and to optimize the model. RESULTS: Age > 75 years vs.18-53 years [HR = 1.502; 95%CI(1.134-1.990)], stage IIIC vs. Stage IIIA [HR = 1.930; 95%CI(1.509-2.470)], lobotomy vs. non-surgery [HR = 0.295; 95%CI(0.228-0.383)], radiotherapy vs. non-radiotherapy [HR = 0.481; 95%CI(0.373-0.619)], chemotherapy vs. Non-chemotherapy [HR = 0.443; 95%CI(0.381-0.515)], positive serum AFP before treatment vs. negative [HR = 1.667; 95%CI(1.356-2.049)], the above indicators are independent prognostic factors for patients with stage III hepatocellular carcinoma, and the P values for the above results were less than 0.05. A joint prediction model was constructed based on age, TNM stage, whether and how to operate, whether to receive radiotherapy, whether to receive chemotherapy, pre-treatment serum AFP status and liver fibrosis score. The consistency index of the improved prognosis model was 0.725. CONCLUSIONS: The traditional TNM staging has limitations for clinical diagnosis and treatment, while the Nomogram model modified by TNM staging has good predictive efficacy and clinical significance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Anciano , Pronóstico , Carcinoma Hepatocelular/terapia , alfa-Fetoproteínas , Neoplasias Hepáticas/terapia , Nomogramas
12.
Plant Biotechnol J ; 21(8): 1695-1706, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37161940

RESUMEN

Citrate is a common primary metabolite which often characterizes fruit flavour. The key regulators of citrate accumulation in fruit and vegetables are poorly understood. We systematically analysed the dynamic profiles of organic acid components during the development of kiwifruit (Actinidia spp.). Citrate continuously accumulated so that it became the predominate contributor to total acidity at harvest. Based on a co-expression network analysis using different kiwifruit cultivars, an Al-ACTIVATED MALATE TRANSPORTER gene (AcALMT1) was identified as a candidate responsible for citrate accumulation. Electrophysiological assays using expression of this gene in Xenopus oocytes revealed that AcALMT1 functions as a citrate transporter. Additionally, transient overexpression of AcALMT1 in kiwifruit significantly increased citrate content, while tissues showing higher AcALMT1 expression accumulated more citrate. The expression of AcALMT1 was highly correlated with 17 transcription factor candidates. However, dual-luciferase and EMSA assays indicated that only the NAC transcription factor, AcNAC1, activated AcALMT1 expression via direct binding to its promoter. Targeted CRISPR-Cas9-induced mutagenesis of AcNAC1 in kiwifruit resulted in dramatic declines in citrate levels while malate and quinate levels were not substantially affected. Our findings show that transcriptional regulation of a major citrate transporter, by a NAC transcription factor, is responsible for citrate accumulation in kiwifruit, which has broad implications for other fruits and vegetables.


Asunto(s)
Ácido Cítrico , Factores de Transcripción , Ácido Cítrico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frutas/metabolismo , Malatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
13.
Opt Express ; 31(6): 9416-9427, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157513

RESUMEN

Optical lattices with spatially regular structures have recently attracted considerable attention across physics and optics communities. In particular, due to the increasing emergence of new structured light fields, diverse lattices with rich topology are being generated via multi-beam interference. Here, we report a specific ring lattice with radial lobe structures generated via superposition of two ring Airy vortex beams (RAVBs). We show that the lattice morphology evolves upon propagation in free space, switching from a bright-ring lattice to dark-ring lattice and even to fascinating multilayer texture. This underlying physical mechanism is related to the variation of the unique intermodal phase between the RAVBs as well as topological energy flow with symmetry breaking. Our finds provide an approach for engineering customized ring lattices to inspire a wide variety of new applications.

14.
Adv Healthc Mater ; 12(17): e2203199, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36871174

RESUMEN

Peripheral nerve defects are a worldwide problem, and autologous nerve transplantation is currently the gold-standard treatment for them. Tissue-engineered nerve (TEN) grafts are widely considered promising methods for the same, and have attracted much attention. To improve repair, the incorporation of bionics into TEN grafts has become a focus of research. In this study, a novel bionic TEN graft with a biomimetic structure and composition is designed. For this purpose, a chitin helical scaffold is fabricated by means of mold casting and acetylation using chitosan as the raw material, following which a fibrous membrane is electrospun on the outer layer of the chitin scaffold. The lumen of the structure is filled with human bone mesenchymal stem cell-derived extracellular matrix and fibers to provide nutrition and topographic guidance, respectively. The prepared TEN graft is then transplanted to bridge 10 mm sciatic nerve defects in rats. Morphological and functional examination shows that the repair effects of the TEN grafts and autografts are similar. The bionic TEN graft described in this study shows great potential for application and offers a new way to repair clinical peripheral nerve defects.


Asunto(s)
Quitosano , Ingeniería de Tejidos , Ratas , Humanos , Animales , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Biónica , Nervio Ciático/fisiología , Quitosano/química , Regeneración Nerviosa
15.
Ecotoxicol Environ Saf ; 249: 114400, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508809

RESUMEN

Plutella xylostella (L.) is a migratory species and an important insect pest of cruciferous crops worldwide, and Chrysoperla sinica (Tjeder) is a predaceous insect of agricultural and forest pests in the field. Indoxacarb has two enantiomers: (+)-S-indoxacarb and (-)-R-indoxacarb. This study was conducted to clarify the selective toxicity and sublethal effects of both enantiomers on P. xylostella and C. sinica. The (+)-S-indoxacarb isomer had greater acute toxicity to P. xylostella and C. sinica, while (-)-R-indoxacarb had less toxicity to P. xylostella and low toxicity to C. sinica. Lethal concentration 25 % (LC25) of (+)-S-indoxacarb had significant effects on the development, population, and fecundity of P. xylostella and C. sinica. The LC25 concentration of (-)-R-indoxacarb had a significant effect on the oviposition of P. xylostella. The field recommended concentration of (-)-R-indoxacarb significantly affected the pupal stage, adult survival rate, oviposition, and larval survival rate of C. sinica. Both enantiomers could significantly affect the search efficiency, successful attack rate, prey handling time, and maximum predation of C. sinica larvae, and the effects of (+)-S-indoxacarb alone were greater than those of (-)-R-indoxacarb. This study provided evidence of the different selective toxicity, sublethal effects of indoxacarb enantiomers on P. xylostella and C. sinica, which of the results could provide a basis for more rational use of indoxacarb in ecosystems.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Femenino , Insecticidas/toxicidad , Ecosistema , Larva , Resistencia a los Insecticidas
16.
Plants (Basel) ; 13(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38202390

RESUMEN

Excessive salt content in soil has adverse effects on cotton production, especially during the germination and seedling stages. γ-aminobutyric acid (GABA) is an important active substance that is expected to improve the resistance of plants to abiotic stresses. This study focused on two cotton cultivars (Gossypium hirsutum L.: Tahe 2 and Xinluzhong 62) and investigated the impact of exogenous GABA (0, 1, 2, 3, and 4 mM) on seed germination, seedling growth, and related morphological, physiological, and biochemical indicators under salt stress (150 mM NaCl). The results showed that salt stress significantly reduced the germination rate and germination index of cotton seeds (decreased by 20.34% and 32.14% for Tahe 2 and Xinluzhong 62, respectively), leading to decreased seedling height and biomass and causing leaf yellowing. Salt stress induced osmotic stress in seedlings, resulting in ion imbalance (marked reduction in K+/Na+ ratio) and oxidative damage. Under salt stress conditions, exogenous GABA increased the germination rate (increased by 10.64~23.40% and 2.63~31.58% for Tahe 2 and Xinluzhong 62, respectively) and germination index of cotton seeds, as well as plant height and biomass. GABA treatment improved leaf yellowing. Exogenous GABA treatment increased the content of proline and soluble sugars, with varying effects on betaine. Exogenous GABA treatment reduced the Na+ content in seedlings, increased the K+ content, and increased the K+/Na+ ratio (increased by 20.44~28.08% and 29.54~76.33% for Tahe 2 and Xinluzhong 62, respectively). Exogenous GABA treatment enhanced the activities of superoxide dismutase and peroxidase, and reduced the accumulation of hydrogen peroxide and malondialdehyde, but had a negative impact on catalase activity. In conclusion, exogenous GABA effectively improved cotton seed germination. By regulating osmoprotectant levels, maintaining ion homeostasis, and alleviating oxidative stress, GABA mitigated the adverse effects of salt stress on cotton seedling growth.

17.
Biophys J ; 121(22): 4342-4357, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36209362

RESUMEN

Intrinsically disordered regions (IDRs) are common and important functional domains in many proteins. However, IDRs are difficult to target for drug development due to the lack of defined structures that would facilitate the identification of possible drug-binding pockets. Galectin-3 is a carbohydrate-binding protein of which overexpression has been implicated in a wide variety of disorders, including cancer and inflammation. Apart from its carbohydrate-recognition/binding domain (CRD), Galectin-3 also contains a functionally important disordered N-terminal domain (NTD) that contacts the C-terminal domain (CTD) and could be a target for drug development. To overcome challenges involved in inhibitor design due to lack of structure and the highly dynamic nature of the NTD, we used a protocol combining nuclear magnetic resonance data from recombinant Galectin-3 with accelerated molecular dynamics (MD) simulations. This approach identified a pocket in the CTD with which the NTD makes frequent contact. In accordance with this model, mutation of residues L131 and L203 in this pocket caused loss of Galectin-3 agglutination ability, signifying the functional relevance of the cavity. In silico screening was used to design candidate inhibitory peptides targeting the newly discovered cavity, and experimental testing of only three of these yielded one peptide that inhibits the agglutination promoted by wild-type Galectin-3. NMR experiments further confirmed that this peptide indeed binds to a cavity in the CTD, not within the actual CRD. Our results show that it is possible to apply a combination of MD simulations and NMR experiments to precisely predict the binding interface of a disordered domain with a structured domain, and furthermore use this predicted interface for designing inhibitors. This procedure can potentially be extended to many other targets in which similar IDR interactions play a vital functional role.


Asunto(s)
Galectina 3 , Simulación de Dinámica Molecular , Galectina 3/genética , Galectina 3/química , Galectina 3/metabolismo , Espectroscopía de Resonancia Magnética , Péptidos/metabolismo , Unión Proteica
18.
Lab Chip ; 22(22): 4327-4334, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36285690

RESUMEN

Acoustic patterning of micro-particles has many important biomedical applications. However, fabrication of such microdevices is costly and labor-intensive. Among conventional fabrication methods, photo-lithography provides high resolution but is expensive and time consuming, and not ideal for rapid prototyping and testing for academic applications. In this work, we demonstrate a highly efficient method for rapid prototyping of acoustic patterning devices using laser manufacturing. With this method we can fabricate a newly designed functional acoustic device in 4 hours. The acoustic devices fabricated using this method can achieve sub-wavelength, complex and non-periodic patterning of microparticles and biological objects with a spatial resolution of 60 µm across a large active manipulation area of 10 × 10 mm2.


Asunto(s)
Acústica , Rayos Láser
19.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35745346

RESUMEN

As a typical two-dimensional layered metal sulfide, MoS2 has a high theoretical capacity and large layer spacing, which is beneficial for ion transport. Herein, a facile polymerization method is employed to synthesize polypyrrole (PPy) nanotubes, followed by a hydrothermal method to obtain flower-rod-shaped MoS2/PPy (FR-MoS2/PPy) composites. The FR-MoS2/PPy achieves outstanding electrochemical performance as a sodium-ion battery anode. After 60 cycles under 100 mA g-1, the FR-MoS2/PPy can maintain a capacity of 431.9 mAh g-1. As for rate performance, when the current densities range from 0.1 to 2 A g-1, the capacities only reduce from 489.7 to 363.2 mAh g-1. The excellent performance comes from a high specific surface area provided by the unique structure and the synergistic effect between the components. Additionally, the introduction of conductive PPy improves the conductivity of the material and the internal hollow structure relieves the volume expansion. In addition, kinetic calculations show that the composite material has a high sodium-ion transmission rate, and the external pseudocapacitance behavior can also significantly improve its electrochemical performance. This method provides a new idea for the development of advanced high-capacity anode materials for sodium-ion batteries.

20.
Front Oncol ; 12: 828041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371997

RESUMEN

Normal early human B-cell development from lymphoid progenitors in the bone marrow depends on instructions from elements in that microenvironment that include stromal cells and factors secreted by these cells including the extracellular matrix. Glycosylation is thought to play a key role in such interactions. The sialyltransferase ST6Gal1, with high expression in specific hematopoietic cell types, is the only enzyme thought to catalyze the terminal addition of sialic acids in an α2-6-linkage to galactose on N-glycans in such cells. Expression of ST6Gal1 increases as B cells undergo normal B-lineage differentiation. B-cell precursor acute lymphoblastic leukemias (BCP-ALLs) with differentiation arrest at various stages of early B-cell development have widely different expression levels of ST6GAL1 at diagnosis, with high ST6Gal1 in some but not in other relapses. We analyzed the consequences of increasing ST6Gal1 expression in a diagnosis sample using lentiviral transduction. NSG mice transplanted with these BCP-ALL cells were monitored for survival. Compared to mice transplanted with leukemia cells expressing original ST6Gal1 levels, increased ST6Gal1 expression was associated with significantly reduced survival. A cohort of mice was also treated for 7 weeks with vincristine chemotherapy to induce remission and then allowed to relapse. Upon vincristine discontinuation, relapse was detected in both groups, but mice transplanted with ST6Gal1 overexpressing BCP-ALL cells had an increased leukemia burden and shorter survival than controls. The BCP-ALL cells with higher ST6Gal1 were more resistant to long-term vincristine treatment in an ex vivo tissue co-culture model with OP9 bone marrow stromal cells. Gene expression analysis using RNA-seq showed a surprisingly large number of genes with significantly differential expression, of which approximately 60% increased mRNAs, in the ST6Gal1 overexpressing BCP-ALL cells. Pathways significantly downregulated included those involved in immune cell migration. However, ST6Gal1 knockdown cells also showed increased insensitivity to chemotherapy. Our combined results point to a context-dependent effect of ST6Gal1 expression on BCP-ALL cells, which is discussed within the framework of its activity as an enzyme with many N-linked glycoprotein substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...