Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967368

RESUMEN

Fluorescence sensing and imaging techniques are being widely studied for detecting carbon monoxide (CO) in living organisms due to their speed, sensitivity, and ease of use to biological systems. Most fluorescent probes used for this purpose are based on heavy metal ions like Pd, with a few using elements like Ru, Rh, Ir, Os, Tb, and Eu. However, these metals can be expensive and toxic to cells. There is a need for more affordable and biologically safe fluorescent probes for CO detection. Drawing inspiration from the robust affinity exhibited by heme iron toward CO, in this work, a rhodamine derivative called RBF was developed for imaging CO in living cells by binding to Fe(III) and could be used for CO sensing. A Fe(III)-based fluorescent probe for CO imaging in living cells offers advantages of cost effectiveness, low toxicity, and ease of use. The fluorescence detection using the RBF-Fe system showed a direct correlation with increasing levels of CORM-3 (LOD = 146 nM) or the exposure time of CO gas, displaying reduced fluorescence. A CO test paper based on RBF-Fe was created for simple on-site CO detection, where fluorescence would diminish in response to CO exposure, allowing rapid (2 min) visual identification. Imaging of CO in living cells was successfully conducted using the probe system, showing a decrease in fluorescence intensity as CORM-3 concentrations increased, indicating its effectiveness in monitoring CO levels accurately within living cells.

2.
Medicine (Baltimore) ; 103(27): e38821, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968456

RESUMEN

BACKGROUND: To evaluate the effect of perioperative esketamine administration on postpartum depression in pregnant women undergoing cesarean section. METHODS: Data sources was PubMed, Embase, Web of Science, and Cochrane Library from inception to February 1, 2024. Randomized controlled trials in pregnant women undergoing cesarean section were selected and compared to the use of esketamine in the perioperative period. The primary outcome measure was the incidence of postpartum maternal depression. Preferred reporting items for systematic reviews and meta-analyses were used. Data pooled by random-effects models are presented as risk ratios (RR) (95% confidence intervals, 95% CI) or mean differences (95% CI). This review was registered in PROSPERO (ID: CRD42023431197). RESULTS: We included 8 studies with a total of 1655 participants. The quality of the studies was rated high or unclear. Seven studies involving 1485 participants reported the incidence of postpartum depression. Compared with pregnant women undergoing cesarean section without the use of esketamine, those using esketamine in the perioperative period showed a 48% decreased risk of developing postpartum depression (RR: 0.52, 95% CI: 0.35-0.79) and a 1.43-point reduction in EPDS (Edinburgh Postnatal Depression Scale) (mean difference: -1.43, 95% CI: -2.32 to -0.54). For immediate intraoperative adverse reactions, the application of esketamine caused maternal nausea and vomiting (RR: 2.16, 95% CI: 1.22-3.81), dizziness (RR: 6.11, 95% CI: 1.49-24.98), and hallucinations (RR: 6.83, 95% CI: 1.57-29.68) compared to no esketamine use. CONCLUSIONS: Perioperative use of esketamine in pregnant women undergoing cesarean section may reduce postpartum depression and increase intraoperative adverse reactions, but has no significant effect on postoperative adverse reactions.


Asunto(s)
Cesárea , Depresión Posparto , Ketamina , Humanos , Ketamina/administración & dosificación , Ketamina/uso terapéutico , Femenino , Cesárea/efectos adversos , Embarazo , Depresión Posparto/prevención & control , Depresión Posparto/epidemiología , Ensayos Clínicos Controlados Aleatorios como Asunto , Atención Perioperativa/métodos
3.
RSC Adv ; 14(12): 8303-8312, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38487520

RESUMEN

The excessive use of quinolones (QNs) has seriously threatened human health. In this study, a novel functionalized magnetic covalent organic framework Fe3O4@SiO2@Ah-COF was fabricated with biphenyl-3,3',5,5'-tetracarbaldehyde and hydrazine hydrate (85%) as monomers and was used as a magnetic solid-phase extraction (MSPE) absorbent for the determination of 24 QNs in water and egg samples through ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The extraction parameters of MSPE were optimized, including pH, adsorbent dosage, adsorption time, and eluent type. An effective and rapid detection method was then established, which showed good linearity (R2 ≥ 0.9990), low limits of detection (0.003-0.036 µg L-1) and low limits of quantitation (0.008-0.110 µg L-1) for QNs. The good recoveries of 24 QNs in water and egg samples were in the range of 70.3-106.1% and 70.4-119.7%, respectively, with relative standard deviations lower than 10% (n = 5). As a result, Fe3O4@SiO2@Ah-COF is a promising magnetic adsorbent, and the established method was successfully applied for the determination of 24 QNs in water and egg samples.

4.
Anal Chem ; 95(30): 11518-11525, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37462228

RESUMEN

Novel high-performance fluorescent approaches have always significant demand for room-temperature detection of carbon monoxide (CO), which is highly toxic even at low concentration levels and is not easy to recognize due to its colorless and odorless nature. In this paper, we constructed a palladium-mediated fluorescence turn-on sensing platform (TPANN-Pd) for the recognition of CO at room temperature, revealing simultaneously quick response speed (<30 s), excellent selectivity, superior sensitivity, and low detection limit (∼160 nM for CORM-3, ∼1.7 ppb for CO vapor). Moreover, rapid detection and efficient removal (24%) from the air by naked-eye vision has been successfully realized based on TPANN-Pd supramolecular gels. Furthermore, the developed sensing platform was elucidated with low cytotoxicity and high cellular uptake, and it was successfully applied to CO imaging in living cells, providing real-time monitoring of potential CO-involved reactions in biological systems.


Asunto(s)
Monóxido de Carbono , Paladio , Colorantes Fluorescentes/química , Colorantes Fluorescentes/toxicidad
5.
Adv Mater ; 34(17): e2109147, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35229379

RESUMEN

Organic light-emitting diodes (OLEDs) that can simultaneously achieve narrowband emission, high efficiency, and circularly polarized luminescence remain a formidable challenge. In this study, a simple strategy is developed to address this challenge. A chiral exciplex-forming co-host is first designed by employing a chiral donor and an achiral acceptor molecule. The chiral exciplex host enables an achiral green multiple-resonance thermally activated delayed fluorescence emitter to achieve high-performance circularly polarized electroluminescence (CP-EL) with a high external quantum efficiency of 33.2%, large electroluminescence dissymmetry factor of 2.8 × 10-3 , and a small full-width at half-maximum of 42 nm. This work provides a general approach for realizing CP-EL using easily available achiral emitters and can significantly extend the scope of circularly polarized OLEDs.

6.
Int J Biol Macromol ; 155: 1176-1183, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31726174

RESUMEN

Structure-function relationships of starch isolated from eight cultivars of foxtail millets grown in China were investigated. The starch granules were polygonal with diameters between 5 µm and 10 µm. The amylose content ranged from 16.8% to 26.8%, and the relative crystallinity and the full width at half maximum (FWHM) of the Raman band at 480 cm-1 varying between 33.2% and 36.4% and 15.72 to 15.91, respectively. There were only small differences in amylopectin chain length distribution of the eight foxtail millet starches. Significant differences were noted in swelling power, gelatinization, pasting, gel textural properties of starches, but not in vitro enzymic digestibility. Correlation analysis results showed that amylose content and chain length distribution of amylopectin were more important determinants of functional properties of starch than the structural order of the starch granules.


Asunto(s)
Amilosa/análisis , Setaria (Planta)/química , Almidón/química , Amilopectina/química , China , Estructura Molecular , Relación Estructura-Actividad
7.
ACS Appl Mater Interfaces ; 11(8): 8676-8684, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30689340

RESUMEN

A reversible mechanochromic luminescent material based on a simple tetrahedral monoboron complex (B-1) is described. Interestingly, in addition to amorphous powders (P), the compound could exist in three unique crystal states (A, B, and C), showing efficient green-to-red luminescent colors, which is a result of wane and wax of dual emissions of the compound. Surprisingly, one of the emissions increases significantly with increasing temperature, fully offsetting the quenching effect of temperature-assisted internal conversion process. The four states are fully interconvertible through grinding and heating, allowing color writing/painting with a single ink.

8.
J Am Chem Soc ; 141(4): 1757-1765, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30608681

RESUMEN

Constructing polycyclic aromatics-based, highly emissive fluorophores with good solubility and tunable aggregated structures and properties is of great importance for film fabrication, solution processing, and relevant functionality studies. Herein, we describe a general strategy to endow conventional organic fluorophores with enhanced solubility and modulated fluorescent properties via their incorporation into coordination-driven self-assembled metallacycles. A widely used fluorophore, pyrene, was decorated with two pyridyl groups to yield functionalized pyrene 4. Mixing 4 with three aromatic dicarboxylates with different lengths and a 90° Pt(II) metal acceptor in a 2:2:4 stoichiometric ratio resulted in the formation of three metallacycles, 1, 2, and 3. The metallacycles display good solubility in polar organic solvents, highly aggregation-dependent fluorescence, and size-dependent emissions at higher concentrations. Moreover, metallacycle 2-based, silica-gel-supported film as fabricated not only is more emissive than the ligand 4-based one but also displays much improved sensing properties for amines in the vapor state, as demonstrated by significantly increased response speed and decreased recovery time. The enhanced solubility, unique fluorescence behavior, and multi-factor modulation character show that coordination-driven self-assembly can be utilized for the development of new fluorophores through simple modification of conventional fluorophores. The fluorophores synthesized this way possess not only complex topological structures but also good modularity and tunability in fluorescence behavior, which are important for grafting multi-stage energy-transfer systems necessary for the development of high-performance sensing materials.


Asunto(s)
Aminas/análisis , Aminas/química , Pirenos/química , Espectrometría de Fluorescencia/instrumentación , Modelos Moleculares , Conformación Molecular , Procesos Fotoquímicos
9.
ACS Appl Mater Interfaces ; 10(41): 35647-35655, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30229655

RESUMEN

BTEX (benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene) represents a group of volatile organic compounds (VOCs) and constitutes a great threat to human health. However, sensitive, selective, and speedy detection of them on-site and in the vapor phase remains a challenge for years. Herein, we report a film-based fluorescent approach and a conceptual sensor, which shows unprecedented sensitivity, speed, and reversibility to the aromatic hydrocarbons in the vapor phase. In the studies, pentiptycene was employed to produce a nonplanar perylene bisimide (PBI) derivative, P-PBI. The compound was further utilized to fabricate the film. The novelty of the design is the combination of capillary condensation and solvent effect, which is expected to enrich the analytes from vapor phase and shows outputs at the same time. Importantly, the film permits instant response (∼3 s) and real-time identification (<1 min) of benzene and toluene from other aromatic hydrocarbons. The experimental detection limits (DLs) of the six analytes are lower than 9.2, 2.7, 1.9, 0.2, 0.4, and 0.4 ppm, which with the exception of benzene, are significantly lower than the NIOSH recommended long-term exposure limits. More importantly, the film is photochemically stable, and more than 300 repetitive tests showed no observable bleaching. In addition, the sensing is fully reversible. The superior performance of the film device is in support of the assumption that the combination of capillary condensation and solvation effect would constitute an effective way to design high-performance fluorescent films, especially for challenging chemical inert and photoelectronically inactive VOCs.

10.
Nat Commun ; 9(1): 1695, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703929

RESUMEN

Sensitive and rapid identification of illicit drugs in a non-contact mode remains a challenge for years. Here we report three film-based fluorescent sensors showing unprecedented sensitivity, selectivity, and response speed to the existence of six widely abused illicit drugs, including methamphetamine (MAPA), ecstasy, magu, caffeine, phenobarbital (PB), and ketamine in vapor phase. Importantly, for these drugs, the sensing can be successfully performed after 5.0 × 105, 4.0 × 105, 2.0 × 105, 1.0 × 105, 4.0 × 104, and 2.0 × 102 times dilution of their saturated vapor with air at room temperature, respectively. Also, presence of odorous substances (toiletries, fruits, dirty clothes, etc.), water, and amido-bond-containing organic compounds (typical organic amines, legal drugs, and different amino acids) shows little effect upon the sensing. More importantly, discrimination and identification of them can be realized by using the sensors in an array way. Based upon the discoveries, a conceptual, two-sensor based detector is developed, and non-contact detection of the drugs is realized.


Asunto(s)
Colorantes Fluorescentes/química , Drogas Ilícitas/análisis , Imidas/química , Perileno/análogos & derivados , Detección de Abuso de Sustancias/métodos , Compuestos de Boro/química , Humanos , Perileno/química , Sensibilidad y Especificidad , Compuestos Orgánicos Volátiles/análisis
11.
Chem Sci ; 9(7): 1892-1901, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29675235

RESUMEN

This work reports a conceptual sensor array for the highly discriminative analysis of 20 clinically and environmentally relevant volatile small organic molecules (VSOMs), including saturated alkanes and common solvents, in the air at room temperature. For the construction of the sensor array, a four coordinated, non-planar mono-boron complex and four relevant polymers are synthesized. Based on the polymers and the use of different substrates, 8 fluorescent films have been fabricated. Integration of the film-based sensors results in the sensor array, which demonstrates unprecedented discriminating capability toward the VSOMs. Moreover, for the signal molecule of lung cancer, n-pentane, the response time is less than 1 s, the experimental detection limit is lower than 3.7 ppm, and after repeating the tests over 50 times no observable degradation was observed. The superior sensing performance is partially ascribed to the tetrahedral structure of the boron centers in the polymers as it may produce molecular channels in the films, which are a necessity for fast and reversible sensing. In addition, the polarity of the micro-channels may endow the films with additional selectivity towards the analytes. The design as demonstrated provides an effective strategy to improve the sensing performance of fluorescent films to very challenging analytes, such as saturated alkanes.

12.
ACS Appl Mater Interfaces ; 10(15): 12124-12134, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28968055

RESUMEN

Previous research in our group showed that tellurophenes with pinacolboronate (BPin) units at the 2- and/or 5-positions displayed efficient phosphorescence in the solid state, both in the presence of oxygen and water. In this current study, we show that luminescence from a tellurophene is possible when various aryl-based substituents are present, thus greatly expanding the family of known (and potentially accessible) Te-based phosphors. Moreover, for the green phosphorescent perborylated tellurium heterocycle, 2,3,4,5-TeC4BPin4 (4BTe), oxygen-mediated quenching of phosphorescence is an important contributor to the lack of emission in solution (when exposed to air); thus, this system displays aggregation-enhanced emission (AEE). These discoveries should facilitate the future design of color tunable tellurium-based luminogens.

13.
Phys Chem Chem Phys ; 19(35): 23898-23904, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28856364

RESUMEN

Fast, sensitive and selective detection of diamines in the vapor phase is of pivotal importance for air and food quality monitoring. In this work, an electron-poor fluorophore, perylene bisimide (PBI), was modified with hydrophilic residues at its bay positions, resulting in an amphiphilic derivative, PEBBO. Photophysical studies revealed that the compound shows a strong aggregation tendency in various solvents, but the aggregates could be highly fluorescent provided suitable solvents are used. Accordingly, a fluorescent film was constructed via utilization of the well-known Langmuir-Blodgett technique. Sensing performance studies revealed that the film as prepared is sensitive and selective to the presence of diamines in air. Specifically, (1) the experimental detection limit is lower than 0.016 g m-3 and the linear range of the analysis extends from 0.33 g m-3 to 8.20 g m-3 when ethylenediamine was adopted as an example analyte; (2) the presence of other amines and solvents shows little effect upon detection; (3) the response time is less than 5 s. Considering the importance of diamine sensing, the convenience of fluorescence techniques and the superiorities of the film and method as developed, it is believed that the present work is of great importance for promoting technical progress in diamine sensing.

14.
Chem Commun (Camb) ; 53(72): 10018-10021, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28836631

RESUMEN

Host-guest interaction and chemical modification are found to be effective in tuning the formation of reductive species of perylene-bisimide (PBI) derivatives in DMF. Moreover, some of the PBI derivatives as synthesized produce radical anions in the solvent without the need of a base.

15.
Anal Chem ; 89(17): 9360-9367, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28737891

RESUMEN

Development of artificial complex molecular systems is of great importance in understanding complexity in natural processes and for achieving new functionalities. One of the strategies is to create them via optimized utilization of noncovalent interactions and dynamic covalent bonds. We report here on a new complex molecular system, which was constructed by integrating the multiple interactions containing a dynamic covalent interaction between 1,2-diol and boronic acid, a coordination interaction between the silver ion and pyridyl, and an easy accessible reaction between secondary amine and formaldehyde. By employing the three dynamic interactions, a pyrene (Py) labeled fluorophore, PPB, was designed and synthesized. The compound reacts with fructose (F), a monosaccharide, in aqueous phase and produces a fluorescent adduct, PPB-F, which can be further used as a sensing platform for formaldehyde (FA) and the silver ion. The respective dynamic interactions are accompanied with color changes due to the reversible switching between Py-monomer emission and excimer emission. The respective experimental detection limits (DLs) for the three analytes are much lower than 0.2 mM, 0.1 mM, and 2.5 µM, respectively. The presence of relevant compounds or ions shows little effect upon the sensing. No doubt, the results as presented show that the integration of supramolecular interactions including dynamic covalent bonds can be employed as a general strategy to develop new functional molecular systems or materials.

16.
J Phys Chem B ; 121(25): 6189-6199, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28598169

RESUMEN

We demonstrated for the first time that, at temperatures below the melting point of a given polar solvent, the emission of some four-coordinate monoboron complexes containing monoanionic bidentate (NO) ligands shifted to lower wavelengths, but no such shift was observed for studies conducted in nonpolar solvents. This means that the emission from a polar solvent appears at shorter wavelengths if compared with that from a nonpolar solvent when the measurement was performed at low temperatures, a phenomenon totally different from that observed for conventional solvatochromic fluorophores. The finding was rationalized by considering the temperature-dependent conformational relaxation of the tetrahedron monoboron complexes from their local excited (LE) state to their relaxed excited (RE) state. Further studies revealed that variating the structure of the chelating ligands could result in remarkable changes in the fluorescent colors of the monoboron complexes. However, changing the structure of other two monodentate ligands showed little effect upon the fluorescence property of the compounds. Therefore, it is anticipated that the monoboron complexes may be taken as a platform to construct a variety of functional molecular systems via alternating the structure of the chelating ligand and that of the monodentate ligand. As an example, naphthalene was introduced as a monodentate ligand, and independent emissions from naphthalene unit and the other part of the monoboron complex as well as intramolecular energy transfer between them were observed. It is believed that the present work provides a new insight into the monoboron complexes, laying the foundation for them to be explored for developing novel molecular systems.

17.
BMC Gastroenterol ; 17(1): 81, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28637446

RESUMEN

BACKGROUND: This study aimed to investigate potential miRNAs and genes associated with the prognosis of hepatocellular carcinoma (HCC). METHODS: Weighted co-expression network analysis was utilized to analyze the mRNA and miRNA sequencing data of HCC from TCGA (The Cancer Genome Atlas) database. Significant network modules were identified, and then functions of genes in the gene network modules and target genes of miRNAs in the miRNA network modules were explored. Additionally, correlations between network modules and prognostic factors of HCC were analyzed. RESULTS: In total, 10 mRNA network modules were identified, three of which were significantly related to tumor stage, NAFLD (non-alcoholic fatty liver disease) and patient age. Four miRNA network modules were identified, of which one was associated with tumor stage. Targets of hsa-miR-363-5p were found distributed in the gene network modules, such as RGPD5, RGPD6, ZNF445 and ZNF780B. Kaplan-Meier test revealed that low expression of hsa-miR-363-5p was associated with better overall survival of HCC patients. CONCLUSION: hsa-miR-363-5p may be a potential prognostic marker for HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes/genética , Neoplasias Hepáticas/genética , MicroARNs/análisis , ARN Mensajero/análisis , Carcinoma Hepatocelular/patología , Bases de Datos Genéticas , Femenino , Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/patología , Masculino , Estadificación de Neoplasias , Enfermedad del Hígado Graso no Alcohólico/genética , Pronóstico
18.
Faraday Discuss ; 196: 255-268, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27901173

RESUMEN

In this article our attempts to tune the color of luminescence within a new class of aggregation-induced emission (AIE) active tellurophenes is reported along with computational details that include spin-orbit coupling effects so as to better understand the nature of emission in the phosphorescent tellurophene (B-Te-6-B). Despite not meeting some of the initial synthetic targets, the emission within a borylated tellurophene can be altered with the addition of an N-heterocyclic carbene.

19.
J Phys Chem B ; 119(22): 6721-9, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25985384

RESUMEN

Inspired by the concept of constitutional dynamic chemistry, we propose a new and well-adaptable strategy for developing molecular beacon (MB)-like fluorescent probes. To demonstrate the strategy, we synthesized and used an amino group containing pyrenyl derivative of cholesterol (CP) for the construction of new fluorescent probes with EDTA and sulfuric acid. The probes as created were successfully used for n-hexane purity checking and Ba(2+)and Pb(2+)sensing, respectively.


Asunto(s)
Colorantes Fluorescentes/química , Sondas de Oligonucleótidos/química , Acetatos/química , Bario/análisis , Bario/química , Técnicas Biosensibles , Colesterol/química , Ácido Edético/química , Hexanos/química , Interacciones Hidrofóbicas e Hidrofílicas , Plomo/análisis , Plomo/química , Pirenos/química , Solventes/química , Ácidos Sulfúricos/química
20.
ACS Appl Mater Interfaces ; 6(22): 20016-24, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25313531

RESUMEN

Achieving high sensing performance and good photostability of fluorescent films based on adlayer construction represents a significant challenge in the area of functional fluorescent film research. A solution may be offered by "Yin and Yang", a balance idea from Chinese philosophy, for the design of a fluorophore and the relevant assembly. Accordingly, a 1,4-bis(phenylethynyl)benzene (BPEB) derivative (C2) with two cholesteryl residues in the side chains and two glucono units in the head and tail positions was designed and synthesized. As a control, compound C1 was also prepared. The only difference between C1 and C2 is that the hydroxyl groups in the glucono residues of C1 are fully acetylated. Studies of the fluorescence behaviors of the two compounds in solution revealed that both the profile and the intensity of the fluorescence emission of the compounds, in particular C2, are dependent on their concentration and on the nature of solvents employed. Presence of HCl also alters the emission of the compounds in solution. On the basis of the studies, three fluorescent films were prepared, and their sensing performances to HCl in vapor state were studied. Specifically, Film 1 and Film 3 were fabricated via physical coating, separately, of C2 and C1 on glass plate surfaces. As another comparison, Film 2 was also fabricated with C2 as a fluorophore but at a much lower concentration if compared to that for the preparation of Film 1. As revealed by SEM and fluorescent microscopy studies, Film 1 and Film 2 exhibit well-defined microstructures, which are spherical particles and spherical pores, respectively, while Film 3 is characterized by irregular aggregates of C1. Fluorescence measurements demonstrated that Film 1 and Film 3 both display an aggregation emission, of which the emission from Film 1 is supersensitive to the presence of HCl vapor (detection limit: 0.4 ppb, a lowest value reported in the literatures). For Film 3, however, its emission is insensitive to the presence of the vapor. Similarly, the emission from the nonaggregated state of C2, a characteristic emission of Film 2, is also insensitive to the presence of the vapor. Furthermore, the sensing process of Film 1 to the vapor is highly selective and fully reversible, which lays foundation for its real-life uses. As for C2, the results from solution studies and those from film studies demonstrate clearly that introduction of auxiliary structures with opposite properties onto a typical fluorophore is a good strategy to develop fluorescent supramolecular motifs with rich assembly properties and great potential of applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...