Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Med Res ; 25(1): 8, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32183905

RESUMEN

BACKGROUND: Kawasaki disease (KD) is a common, yet unknown etiology disease in Asian countries, which causes acquired heart disease in childhood. It is characterized by an inflammatory acute febrile vasculitis of medium-sized arteries, particularly the coronary arteries. High-mobility group box-1 protein (HMGB1) is a non-histone chromosomal-binding protein present in the nucleus of eukaryotic cells, which contains 215 amino acid residues. Although the cellular signal transduction mechanisms of HMGB1 are currently unclear, the important role of the receptor for advanced glycation end-products (RAGE), the main receptor for HMGB1 has been reported in detail. The purpose of our study was to verify the mechanism and clinical significance of HMGB1-RAGE in coronary artery injury of Kawasaki disease. METHODS: 52 blood samples of patients in KD were collected, and the coronary artery Z score was calculated according to the echocardiographic results. The Z score ≥ 2.0 was classified as coronary artery lesions (CAL); otherwise, it was no-coronary artery lesions (NCAL). In addition, the fever group and control group were set. Among them, the fever group were children with fever due to respiratory tract infection at the same time period as KD (heat peak ≥ 38.5 â„ƒ). The normal group were children at a routine physical examination in the outpatient clinic of Nantong University and the physical examination center of the child care insurance, and there were no infectious diseases and heart diseases. The serum levels of HMGB1, RAGE, and NF-κB in each group were detected by ELISA. The animal model of KD was established using the New Zealand young rabbits. We used RT-qPCR/H&E staining/immunohistochemistry/ELISA and western blot to detect the level of HMGB1/RAGE and NF-κB. RESULTS: In this study, we found that the HMGB1/RAGE/NF-κB axis was elevated in the serum of children with KD. In addition, an animal model of KD was subsequently prepared to examine the pathological changes of the coronary arteries. We found that the serum levels of HMGB1/RAGE/NF-κB in rabbits with KD were significantly higher than those of the control group. Moreover, the lumen diameter of the coronary artery was slightly enlarged, and the wall of the tube became thinner and deformed. In addition, the HMGB1/RAGE/NF-κB levels in the coronary artery were higher in the rabbits with KD in the acute phase. CONCLUSIONS: On the whole, the findings of this study demonstrate that the expression of HMGB1/RAGE/NF-κB is altered at different stages of KD, suggesting that the HMGB1/RAGE/NF-κB signaling pathway plays an important role in vascular injury in KD. The results of this study may have important implications for the early warning of coronary artery lesions in KD.


Asunto(s)
Proteína HMGB1/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Factor de Transcripción ReIA/metabolismo , Lesiones del Sistema Vascular/metabolismo , Adulto , Animales , Niño , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Síndrome Mucocutáneo Linfonodular/metabolismo , FN-kappa B/metabolismo , Conejos , Adulto Joven
2.
J Toxicol Sci ; 44(10): 657-666, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31588057

RESUMEN

Perfluorooctane sulfonate (PFOS), a kind of organic pollutant widely found in the environment and biota, could alter normal brain development and produce cognitive dysfunction. For the past years, the neurotoxic effects of PFOS have been shown. Recent studies have proven that PFOS can induce neuronal apoptosis and cause neurotoxicity, but the regulatory proteins referred to the process have not been clarified. In this study, PC12 cells were used to investigate the changes of the expression of apoptosis-related proteins, forkhead box O3 (FoxO3a) and pro-apoptotic Bcl-2 proteins. We detected that the levels of cleaved caspase-3 and cleaved PARP were up-regulated obviously in PFOS-treated PC12 cells by using Western blotting, and that the apoptotic rate of PC12 cells was increased significantly by using flow cytometry, verifying that PFOS could induce neuronal apoptosis. Western blot analysis and immunofluorescence revealed obvious up-regulation of the expression of FoxO3a and proapoptotic Bcl-2 proteins. In addition, knockdown of FoxO3a gene inhibited Bim expression and apoptosis. According to the data, we believe that FoxO3a may play a crucial role in PFOS-induced neurotoxicity.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Proteína Forkhead Box O3/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína Forkhead Box O3/genética , Células PC12 , ARN Interferente Pequeño/genética , Ratas , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...