Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Curr Med Chem ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39449339

RESUMEN

Signs and symptoms that persist or worsen beyond the "acute COVID-19" stage are referred to as long-COVID. These patients are more likely to suffer from multiple organ failure, readmission, and mortality. According to a recent theory, long-lasting COVID-19 symptoms may be caused by abnormal autonomic nervous system (ANS) activity, such as hypovolemia, brain stem involvement, and autoimmune reactions. Furthermore, COVID-19 can also cause impaired fertility in women, which may also be related to inflammation and immune responses. Currently, few treatments are available for long-COVID symptoms. This article reviews the major effects of COVID-19 on the nervous system and female fertility, as well as offers potential treatment approaches.

2.
Nat Commun ; 15(1): 9037, 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39426953

RESUMEN

The CUT and homeodomain are ubiquitous DNA binding elements often tandemly arranged in multiple transcription factor families. However, how the CUT and homeodomain work concertedly to bind DNA remains unknown. Using ONECUT2, a driver and therapeutic target of advanced prostate cancer, we show that while the CUT initiates DNA binding, the homeodomain thermodynamically stabilizes the ONECUT2-DNA complex through allosteric modulation of CUT. We identify an arginine pair in the ONECUT family homeodomain that can adapt to DNA sequence variations. Base interactions by this ONECUT family-specific arginine pair as well as the evolutionarily conserved residues are critical for optimal DNA binding and ONECUT2 transcriptional activity in a prostate cancer model. The evolutionarily conserved base interactions additionally determine the ONECUT2-DNA binding energetics. These findings provide insights into the cooperative DNA binding by CUT-homeodomain proteins.


Asunto(s)
ADN , Proteínas de Homeodominio , Neoplasias de la Próstata , Unión Proteica , Factores de Transcripción , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/química , Humanos , ADN/metabolismo , ADN/química , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Línea Celular Tumoral , Arginina/metabolismo , Arginina/química , Sitios de Unión , Regulación Neoplásica de la Expresión Génica , Animales
3.
Medicine (Baltimore) ; 103(31): e39216, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093746

RESUMEN

BACKGROUND: This study aims to report the clinical characteristics of a child with autosomal recessive polycystic kidney disease (ARPKD) within a Chinese Zhuang ethnic family. METHODS: We used whole exome sequencing (WES) in the family to examine the genetic cause of the disease. Candidate pathogenic variants were validated by Sanger sequencing. RESULTS: We identified previously unreported mutations in the PKHD1 gene of the proband with ARPKD through WES: a splice site mutation c.6809-2A > T, a nonsense mutation c.4192C > T(p.Gln1398Ter), and a missense mutation c.2181T > G(p.Asn727Lys). Her mother is a heterozygous carrier of c.2181T > G(p.Asn727Lys) mutation. Her father is a carrier of c.6809-2A > T mutation and c.4192C > T(p.Gln1398Ter) mutation. CONCLUSIONS: The identification of novel mutations in the PKHD1 gene through WES not only expands the spectrum of known variants but also potentially enhances genetic counseling and prenatal diagnostic approaches for families affected by ARPKD.


Asunto(s)
Codón sin Sentido , Linaje , Riñón Poliquístico Autosómico Recesivo , Receptores de Superficie Celular , Humanos , Riñón Poliquístico Autosómico Recesivo/genética , Receptores de Superficie Celular/genética , Femenino , China , Masculino , Secuenciación del Exoma , Sitios de Empalme de ARN/genética , Mutación Missense , Adulto , Pueblos del Este de Asia
4.
Research (Wash D C) ; 7: 0447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165638

RESUMEN

Bone is a dynamic tissue reshaped by constant bone formation and bone resorption to maintain its function. The skeletal system accounts for approximately 70% of the total volume of the body, and continuous bone remodeling requires quantities of energy and material consumption. Adipose tissue is the main energy storehouse of the body and has a strong adaptive capacity to participate in the regulation of various physiological processes. Considering that obesity and metabolic syndrome have become major public health challenges, while osteoporosis and osteoporotic fractures have become other major health problems in the aging population, it would be interesting to explore these 2 diseases together. Currently, an increasing number of researchers are focusing on the interactions between multiple tissue systems, i.e., multiple organs and tissues that are functionally coordinated together and pathologically pathologically interact with each other in the body. However, there is lack of detailed reviews summarizing the effects of lipid metabolism on bone homeostasis and the interactions between adipose tissue and bone tissue. This review provides a detailed summary of recent advances in understanding how lipid molecules and adipose-derived hormones affect bone homeostasis, how bone tissue, as a metabolic organ, affects lipid metabolism, and how lipid metabolism is regulated by bone-derived cytokines.

5.
Commun Stat Theory Methods ; 53(17): 6038-6054, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100716

RESUMEN

Phase IV clinical trials are designed to monitor long-term side effects of medical treatment. For instance, childhood cancer survivors treated with chest radiation and/or anthracycline are often at risk of developing cardiotoxicity during their adulthood. Often the primary focus of a study could be on estimating the cumulative incidence of a particular outcome of interest such as cardiotoxicity. However, it is challenging to evaluate patients continuously and usually, this information is collected through cross-sectional surveys by following patients longitudinally. This leads to interval-censored data since the exact time of the onset of the toxicity is unknown. Rai et al. computed the transition intensity rate using a parametric model and estimated parameters using maximum likelihood approach in an illness-death model. However, such approach may not be suitable if the underlying parametric assumptions do not hold. This manuscript proposes a semi-parametric model, with a logit relationship for the treatment intensities in two groups, to estimate the transition intensity rates within the context of an illness-death model. The estimation of the parameters is done using an EM algorithm with profile likelihood. Results from the simulation studies suggest that the proposed approach is easy to implement and yields comparable results to the parametric model.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38990751

RESUMEN

Transformers are widely used in computer vision areas and have achieved remarkable success. Most state-of-the-art approaches split images into regular grids and represent each grid region with a vision token. However, fixed token distribution disregards the semantic meaning of different image regions, resulting in sub-optimal performance. To address this issue, we propose the Token Clustering Transformer (TCFormer), which generates dynamic vision tokens based on semantic meaning. Our dynamic tokens possess two crucial characteristics: (1) Representing image regions with similar semantic meanings using the same vision token, even if those regions are not adjacent, and (2) concentrating on regions with valuable details and represent them using fine tokens. Through extensive experimentation across various applications, including image classification, human pose estimation, semantic segmentation, and object detection, we demonstrate the effectiveness of our TCFormer. The code and models for this work are available at https://github.com/zengwang430521/TCFormer.

7.
Foods ; 13(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063325

RESUMEN

The conservation of agricultural heritage systems (AHSs) has played a pivotal role in fostering the sustainable development of agriculture and safeguarding farmers' livelihoods and food security worldwide. This significance is particularly evident in the case of tea AHSs, due to the economic and nutritional value of tea products. Taking the Anxi Tieguanyin Tea Culture System (ATTCS) and Fuding White Tea Culture System (FWTCS) in Fujian Province as examples, this study uses statistical analyses and a multinomial logistic regression model to assess and compare farmer livelihood and food security at the tea AHS sites. The main findings are as follows. First, as the tea industries are at different stages of development, compared with agricultural and non-agricultural part-time households, the welfare level of pure agricultural households is lowest in the ATTCS, while welfare is the highest in the FWTCS. Second, factors such as the area of tea gardens and the number of laborers significantly affect farmers' livelihood strategies transformation from pure agricultural households to agricultural part-time households in the ATTCS and FWTCS. Third, the high commodity rate of tea products, combined with compound cultivation in tea gardens, provides local people with essential sources of income, food, and nutrients, so as to improve food security in the ATTCS and FWTCS. These findings are essential for designing policies to ensure farmers' livelihoods and food security through AHSs and other sustainable agriculture.

8.
Plants (Basel) ; 13(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39065513

RESUMEN

Planting density is an important factor affecting plant growth and yield formation in rapeseed. However, the understanding of the mechanism underlying the impact of planting density on biomass, canopy, and ultimate seed yield remains limited. A field experiment was conducted to investigate the effect of planting density on seed yield, yield components, biomass accumulation and partitioning, and canopy structure. Five planting density levels were set as D1 (2.4 × 105 plants ha-1), D2 (3.6 × 105 plants ha-1), D3 (5.4 × 105 plants ha-1), D4 (6.0 × 105 plants ha-1), and D5 (7.2 × 105 plants ha-1). The results showed that with planting density increasing from D1 to D3, the seed yield, number of pods in population, and 1000-seed weight increased, while seedling survival rate, yield per plant, number of pods per plant, and number of seeds per plant decreased. When planting density increased to D4 and D5, seed yield dramatically decreased due to a decreased number of seeds per pod and 1000-seed weight. Increasing planting density from D1 to D3 increased biomass accumulation in all organs. D3 produced the highest biomass partitioning in seeds. In addition, D2 and D3 treatments had a high level of pod area index (5.3-5.8), which caused an approximately 93% of the light to be intercepted. The distribution of light in D2 and D3 was more evenly spread, with the upper and lower parts of the canopy displaying a distribution ratio of roughly 7:3. Therefore, D2 and D3 produced the highest seed yields. In conclusion, D2 and D3 are recommended in rapeseed production due to their role in improving biomass accumulation and partitioning and canopy structure.

9.
Front Immunol ; 15: 1416751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040095

RESUMEN

Tissue-resident memory T cells (TRM) are a specialized subset of long-lived memory T cells that reside in peripheral tissues. However, the impact of TRM-related immunosurveillance on the tumor-immune microenvironment (TIME) and tumor progression across various non-small-cell lung cancer (NSCLC) patient populations is yet to be elucidated. Our comprehensive analysis of multiple independent single-cell and bulk RNA-seq datasets of patient NSCLC samples generated reliable, unique TRM signatures, through which we inferred the abundance of TRM in NSCLC. We discovered that TRM abundance is consistently positively correlated with CD4+ T helper 1 cells, M1 macrophages, and resting dendritic cells in the TIME. In addition, TRM signatures are strongly associated with immune checkpoint and stimulatory genes and the prognosis of NSCLC patients. A TRM-based machine learning model to predict patient survival was validated and an 18-gene risk score was further developed to effectively stratify patients into low-risk and high-risk categories, wherein patients with high-risk scores had significantly lower overall survival than patients with low-risk. The prognostic value of the risk score was independently validated by the Cancer Genome Atlas Program (TCGA) dataset and multiple independent NSCLC patient datasets. Notably, low-risk NSCLC patients with higher TRM infiltration exhibited enhanced T-cell immunity, nature killer cell activation, and other TIME immune responses related pathways, indicating a more active immune profile benefitting from immunotherapy. However, the TRM signature revealed low TRM abundance and a lack of prognostic association among lung squamous cell carcinoma patients in contrast to adenocarcinoma, indicating that the two NSCLC subtypes are driven by distinct TIMEs. Altogether, this study provides valuable insights into the complex interactions between TRM and TIME and their impact on NSCLC patient prognosis. The development of a simplified 18-gene risk score provides a practical prognostic marker for risk stratification.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células T de Memoria , Microambiente Tumoral , Humanos , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pronóstico , Células T de Memoria/inmunología , Memoria Inmunológica , Linfocitos Infiltrantes de Tumor/inmunología
10.
Histol Histopathol ; : 18795, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39037126

RESUMEN

BACKGROUND: Pediatric pneumonia is a prevalent and significant health concern worldwide, with elevated morbidity and mortality rates among affected children. This study was designed to elucidate the therapeutic impact of Oridonin (Ori) on pediatric pneumonia and unravel the underlying mechanisms involved. METHODS: A pediatric infantile pneumonia model was established in mice through intratracheal administration of LPS. Additionally, a cell damage model was created in WI-38 cells by administering LPS. Protein levels were assessed via western blotting, and cell viability was measured with CCK-8. Inflammatory cytokines were quantified through ELISA, and specific assays were employed to evaluate oxidative stress markers. Flow cytometry was utilized to assess cell apoptosis. RESULTS: Ori alleviated lung inflammation, oxidative stress, apoptosis, and endoplasmic reticulum stress (ERS) in LPS-induced pneumonia mice. In addition, Ori increased the viability of LPS-induced pneumonia cells but decreased cell apoptosis. Furthermore, Ori reduced oxidative stress, inflammation, and ERS in LPS-induced pneumonia cells by enhancing SIRT1 to activate the Wnt/ß-catenin pathway. CONCLUSION: This study suggested that Ori inhibited pediatric pneumonia by dampening the inflammatory response, oxidative stress, cell apoptosis, and ERS via the SIRT1/Wnt/ß-catenin pathway.

12.
Mikrochim Acta ; 191(8): 476, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037471

RESUMEN

A highly sensitive dual-recognition fluorescence amplification method is presented for lipopolysaccharide (LPS) detection based on boronic functionalized aptamer macroarrays with dual-recognition and isothermal amplification. The surface of the polystyrene microplate was firstly carboxylated, and then, 3-aminophenylboronic acid was conjugated to the carboxyl groups through EDC/NHS reaction, creating boronic acid groups as the capture moiety for LPS. A recognition DNA aptamer labeled with the fluorescent dye 6-FAM, which exhibits specificity towards LPS, was selected as the signal reporting moiety. By introducing primers and Klenow enzyme, the fluorescent-labeled aptamers are released from the microplate bottom, and double-stranded structures were formed via isothermal amplification. The addition of SYBR Green I, which strongly fluoresces upon binding to the double-stranded structures, enables signal amplification and detection. This detection method exhibits a linear range of 1-10,000 ng/mL and has a detection limit as low as 401.93 pg/mL. This analytical approach shows high selectivity and sensitivity and may serve as a universal platform in lipopolysaccharide detection.


Asunto(s)
Aptámeros de Nucleótidos , Ácidos Borónicos , Colorantes Fluorescentes , Límite de Detección , Lipopolisacáridos , Técnicas de Amplificación de Ácido Nucleico , Aptámeros de Nucleótidos/química , Lipopolisacáridos/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , Ácidos Borónicos/química , Colorantes Fluorescentes/química , Técnicas Biosensibles/métodos
13.
MedComm (2020) ; 5(8): e657, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39049966

RESUMEN

As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.

14.
J Org Chem ; 89(15): 11031-11042, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39016213

RESUMEN

An enantioselective synthesis of a new class of benzophosphole-based heterocycles bearing a fused triazole ring with enantioselectivities of ≤99% is reported. The key steps of the synthesis are based on an innovative stereospecific phosphinyl N â†’ O migration of aminophosphine-boranes into phosphinites, followed by an intramolecular cyclization. Five X-ray structures of P-chirogenic triazolobenzophospholes and a gold(I) complex were established, for assigning absolute configurations, the stereochemistry of the reactions, and the placement of the triazole substituent at the syn position of the P center.

15.
Nucleic Acids Res ; 52(13): 7740-7760, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38932701

RESUMEN

Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 gene targets include the glucocorticoid receptor (GR; NR3C1) and the NE splicing factor SRRM4, which are key drivers of lineage plasticity. Thus, OC2, despite its previously described NEPC driver function, can indirectly activate a portion of the AR cistrome through epigenetic activation of GR. Mechanisms by which OC2 regulates gene expression include promoter binding, enhancement of genome-wide chromatin accessibility, and super-enhancer reprogramming. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC and support enhanced efforts to therapeutically target OC2 as a means of suppressing treatment-resistant disease.


Asunto(s)
Adenocarcinoma , Benzamidas , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Nitrilos , Neoplasias de la Próstata , Receptores Androgénicos , Receptores de Glucocorticoides , Masculino , Humanos , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/tratamiento farmacológico , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Benzamidas/farmacología , Línea Celular Tumoral , Nitrilos/farmacología , Feniltiohidantoína/farmacología , Feniltiohidantoína/análogos & derivados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Epigénesis Genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/tratamiento farmacológico , Animales , Linaje de la Célula/genética , Ratones
16.
Adv Sci (Weinh) ; 11(32): e2402732, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923364

RESUMEN

The development of in situ techniques to quantitatively characterize the heterogeneous reactions is essential for understanding physicochemical processes in aqueous phase. In this work, a new approach coupling in situ UV-vis spectroscopy with a two-step algorithm strategy is developed to quantitatively monitor heterogeneous reactions in a compact closed-loop incorporation. The algorithm involves the inverse adding-doubling method for light scattering correction and the multivariate curve resolution-alternating least squares (MCR-ALS) method for spectral deconvolution. Innovatively, theoretical spectral simulations are employed to connect MCR-ALS solutions with chemical molecular structural evolution without prior information for reference spectra. As a model case study, the aqueous adsorption kinetics of bisphenol A onto polyamide microparticles are successfully quantified in a one-step UV-vis spectroscopic measurement. The practical applicability of this approach is confirmed by rapidly screening a superior adsorbent from commercial materials for antibiotic wastewater adsorption treatment. The demonstrated capabilities are expected to extend beyond monitoring adsorption systems to other heterogeneous reactions, significantly advancing UV-vis spectroscopic techniques toward practical integration into automated experimental platforms for probing aqueous chemical processes and beyond.

17.
Liver Int ; 44(9): 2396-2408, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38847599

RESUMEN

BACKGROUND AND AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the foremost cause of chronic liver disease, yet its underlying mechanisms remain elusive. Our group previously discovered a novel long non-coding RNA (lncRNA) in rats, termed lncHC and its human counterpart, LNCHC. This study aimed to explore the role of LNCHC in the progression of MASLD. METHODS: RNA-binding proteins bound to LNCHC were searched by mass spectrometry. The target genes of LNCHC and Y-Box binding protein 1 (YBX1) were identified by RNA-seq. MASLD animal models were utilised to examine the roles of LNCHC, YBX1 and patatin-like phospholipase domain containing 3 (PNPLA3) in MASLD progression. RESULTS: Here, we identified LNCHC as a native restrainer during MASLD development. Notably, LNCHC directly binds YBX1 and prevents protein ubiquitination. Up-regulation of YBX1 then stabilises PNPLA3 mRNA to alleviate lipid accumulation in hepatocytes. Furthermore, both cell and animal studies demonstrate that LNCHC, YBX1 and PNPLA3 function to improve hepatocyte lipid accumulation and exacerbate metabolic dysfunction-associated steatohepatitis development. CONCLUSIONS: In summary, our findings unveil a novel LNCHC functionality in regulating YBX1 and PNPLA3 mRNA stability during MASLD development, providing new avenues in MASLD treatment.


Asunto(s)
Progresión de la Enfermedad , ARN Largo no Codificante , Proteína 1 de Unión a la Caja Y , Animales , Humanos , Masculino , Ratas , Aciltransferasas , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Fosfolipasas A2 Calcio-Independiente , Ubiquitinación , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , ARN Largo no Codificante/metabolismo
18.
Nature ; 630(8017): 736-743, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839956

RESUMEN

Phagocytosis is the process by which myeloid phagocytes bind to and internalize potentially dangerous microorganisms1. During phagocytosis, innate immune receptors and associated signalling proteins are localized to the maturing phagosome compartment, forming an immune information processing hub brimming with microorganism-sensing features2-8. Here we developed proximity labelling of phagosomal contents (PhagoPL) to identify proteins localizing to phagosomes containing model yeast and bacteria. By comparing the protein composition of phagosomes containing evolutionarily and biochemically distinct microorganisms, we unexpectedly identified programmed death-ligand 1 (PD-L1) as a protein that specifically enriches in phagosomes containing yeast. We found that PD-L1 directly binds to yeast upon processing in phagosomes. By surface display library screening, we identified the ribosomal protein Rpl20b as a fungal protein ligand for PD-L1. Using an auxin-inducible depletion system, we found that detection of Rpl20b by macrophages cross-regulates production of distinct cytokines including interleukin-10 (IL-10) induced by the activation of other innate immune receptors. Thus, this study establishes PhagoPL as a useful approach to quantifying the collection of proteins enriched in phagosomes during host-microorganism interactions, exemplified by identifying PD-L1 as a receptor that binds to fungi.


Asunto(s)
Antígeno B7-H1 , Proteínas Fúngicas , Fagosomas , Proteínas Ribosómicas , Saccharomyces cerevisiae , Animales , Femenino , Humanos , Masculino , Ratones , Antígeno B7-H1/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas/metabolismo , Interacciones Microbiota-Huesped , Inmunidad Innata , Interleucina-10/metabolismo , Ligandos , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Ratones Endogámicos BALB C , Fagocitosis , Fagosomas/química , Fagosomas/metabolismo , Fagosomas/microbiología , Unión Proteica , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Staphylococcus aureus/metabolismo
19.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38842255

RESUMEN

The origins and extreme morphological evolution of the modern dog breeds are poorly studied because the founder populations are extinct. Here, we analyse eight 100 to 200 years old dog fur samples obtained from traditional North Swedish clothing, to explore the origin and artificial selection of the modern Nordic Lapphund and Elkhound dog breeds. Population genomic analysis confirmed the Lapphund and Elkhound breeds to originate from the local dog population, and showed a distinct decrease in genetic diversity in agreement with intense breeding. We identified eleven genes under positive selection during the breed development. In particular, the MSRB3 gene, associated with breed-related ear morphology, was selected in all Lapphund and Elkhound breeds, and functional assays showed that a SNP mutation in the 3'UTR region suppresses its expression through miRNA regulation. Our findings demonstrate analysis of near-modern dog artifacts as an effective tool for interpreting the origin and artificial selection of the modern dog breeds.


Asunto(s)
Pelaje de Animal , Selección Genética , Animales , Perros/genética , Polimorfismo de Nucleótido Simple , Cruzamiento , Suecia , Variación Genética , MicroARNs/genética
20.
Plants (Basel) ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38891297

RESUMEN

Salt stress is one of the major adverse factors affecting plant growth and crop production. Rapeseed is an important oil crop, providing high-quality edible oil for human consumption. This experiment was conducted to investigate the effects of salt stress on the phenotypic traits and physiological processes of rapeseed. The soil salinity was manipulated by setting three different levels: 0 g NaCl kg-1 soil (referred to as S0), 1.5 g NaCl kg-1 soil (referred to as S1), and 3.0 g NaCl kg-1 soil (referred to as S2). In general, the results indicated that the plant height, leaf area, and root neck diameter decreased with an increase in soil salinity. In addition, the biomass of various organs at all growth stages decreased as soil salinity increased from S0 to S2. The increasing soil salinity improved the distribution of biomass in the root and leaf at the seedling and flowering stages, indicating that rapeseed plants subjected to salt stress during the vegetative stage are capable of adapting their growth pattern to sustain their capacity for nutrient and water uptake, as well as leaf photosynthesis. However, as the soil salinity increased, there was a decrease in the distribution of biomass in the pod and seed at the maturity stage, while an increase was observed in the root and stem, suggesting that salt stress inhibited carbohydrate transport into reproductive organs. Moreover, the C and N accumulation at the flowering and maturity stages exhibited a reduction in direct correlation with the increase in soil salinity. High soil salinity resulted in a reduction in the C/N, indicating that salt stress exerted a greater adverse effect on C assimilation compared to N assimilation, leading to an increase in seed protein content and a decrease in oil content. Furthermore, as soil salinity increased from S0 to S2, the activity of superoxide dismutase (SOD) and catalase (CAT) and the content of soluble protein and sugar increased by 58.39%, 33.38%, 15.57%, and 13.88% at the seedling stage, and 38.69%, 22.85%, 12.04%, and 8.26% at the flowering stage, respectively. In summary, this study revealed that salt stress inhibited C and N assimilation, leading to a suppressed phenotype and biomass accumulation. The imbalanced C and N assimilation under salt stress contributed to the alterations in the seed oil and protein content. Rapeseed had a certain degree of salt tolerance by improving antioxidants and osmolytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...