Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Adv Sci (Weinh) ; : e2307224, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946607

RESUMEN

Targeting NLRP3 inflammasome has been recognized as a promising therapeutic strategy for the treatment of numerous common diseases. UK5099, a long-established inhibitor of mitochondrial pyruvate carrier (MPC), is previously found to inhibit macrophage inflammatory responses independent of MPC expression. However, the mechanisms by which UK5099 inhibit inflammatory responses remain unclear. Here, it is shown that UK5099 is a potent inhibitor of the NLRP3 inflammasome in both mouse and human primary macrophages. UK5099 selectively suppresses the activation of the NLRP3 but not the NLRC4 or AIM2 inflammasomes. Of note, UK5099 retains activities on NLRP3 in macrophages devoid of MPC expression, indicating this inhibitory effect is MPC-independent. Mechanistically, UK5099 abrogates mitochondria-NLRP3 interaction and in turn inhibits the assembly of the NLRP3 inflammasome. Further, a single dose of UK5099 persistently reduces IL-1ß production in an endotoxemia mouse model. Importantly, structure modification reveals that the inhibitory activities of UK5099 on NLRP3 are unrelated to the existence of the activated double bond within the UK5099 molecule. Thus, this study uncovers a previously unknown molecular target for UK5099, which not only offers a new candidate for the treatment of NLRP3-driven diseases but also confounds its use as an MPC inhibitor in immunometabolism studies.

2.
Nutr Diabetes ; 14(1): 41, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858382

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a chronic disease with an increasing incidence, which can further develop into liver fibrosis and hepatocellular carcinoma at the end stage. Alantolactone (Ala), a sesquiterpene lactone isolated from Asteraceae, has shown anti-inflammatory effects in different models. However, the therapeutic effect of Ala on NAFLD is not clear. METHODS: C57BL/6 mice were fed a high-fat diet (HFD) to induce NAFLD. After 16 weeks, Ala was administered by gavage to observe its effect on NAFLD. RNA sequencing of liver tissues was performed to investigate the mechanism. In vitro, mouse cell line AML-12 was pretreated with Ala to resist palmitic acid (PA)-induced inflammation, oxidative stress and fibrosis. RESULTS: Ala significantly inhibited inflammation, fibrosis and oxidative stress in HFD-induced mice, as well as PA-induced AML-12 cells. Mechanistic studies showed that the effect of Ala was related to the induction of Nrf2 and the inhibition of NF-κB. Taken together, these findings suggested that Ala exerted a liver protective effect on NAFLD by blocking inflammation and oxidative stress. CONCLUSIONS: The study found that Ala exerted a liver protective effect on NAFLD by blocking inflammation and oxidative stress, suggesting that Ala is an effective therapy for NAFLD.


Asunto(s)
Dieta Alta en Grasa , Inflamación , Lactonas , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Sesquiterpenos de Eudesmano , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Dieta Alta en Grasa/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Ratones , Lactonas/farmacología , Lactonas/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Sesquiterpenos de Eudesmano/farmacología , Sesquiterpenos de Eudesmano/uso terapéutico , Hígado/metabolismo , Hígado/efectos de los fármacos , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Línea Celular , Modelos Animales de Enfermedad
3.
Clin Case Rep ; 12(1): e8414, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235412

RESUMEN

Key Clinical Message: Gastric diverticulum in the posterior wall of the stomach is very rare, and it is easy to be misdiagnosed as a left adrenal mass on imaging. Therefore, we must consider the possibility of gastric diverticulum when diagnosing a left adrenal mass. Abstract: This paper reports a case of gastric diverticulum that was misdiagnosed as a left adrenal mass on abdominal enhanced CT. The patient underwent laparoscopic adrenalectomy, but there was no mass in the left adrenal found during surgery. After the incision of the retroperitoneum, a cystic mass was found adjacent to the posterior gastric wall which turned out to be gastric diverticulum. This case suggests that gastric diverticulum, a rare disease, may be interpreted as an adrenal mass on imaging. Therefore, as a urologist, the gastric diverticulum must be excluded when CT suggests a mass in the left adrenal region.

4.
Int Immunopharmacol ; 128: 111551, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38278067

RESUMEN

Growing evidence demonstrates that chronic low-grade inflammation, which is induced by high-fat diet (HFD) or saturated fatty acid, plays an important role in the obesity-induced cardiomyopathy (OIC) process. Moreover, obesity is associated with the activation of different inflammatory pathways, including nuclear factor-κB (NF-κB), Toll-like-receptor-2 (TLR2) and Toll-like-receptor-4 (TLR4). In this study, we established an HFD-induced cardiac injury mouse model and palmitate (PA)-induced myocardial cell model to evaluate the role of TLR2 in OIC. Our data show that TLR2 blockade using TLR2 knockout (KO) mice or a TLR2-specific inhibitor, C29, markedly ameliorated HFD- or PA-induced inflammation, myocardial fibrosis, and hypertrophy both in vivo and in vitro. Moreover, the PA-induced myocardial cell injury was mediated via inducing the formation of TLR2-MyD88 complex in a TLR4-independent manner in cardiomyocytes. Our data prove the critical role of cardiac TLR2 in the pathogenesis of HFD- and saturated fatty acid-induced myocarditis, fibrosis, myocardial hypertrophy, and cardiac dysfunction. Inhibition of TLR2 pathway may be a therapeutic strategy of OIC.


Asunto(s)
Cardiomiopatías , FN-kappa B , Animales , Ratones , Ácidos Grasos , Hipertrofia , Inflamación/metabolismo , FN-kappa B/metabolismo , Obesidad , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
5.
Phytomedicine ; 119: 154987, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37531901

RESUMEN

BACKGROUND: Hyperglycemic induced cardiac hypertrophy and cardiac inflammation are important pathological processes in diabetic cardiomyopathy. ß-elemene (Ele) is a natural compound extracted from Curcuma Rhizoma and has anti-tumor effects. It also has therapeutic effects in some inflammatory diseases. However, the therapeutic effect of Ele on diabetic cardiomyopathy is not clear. The purpose of this study was to evaluate the effect of Ele on hyperglycemia-caused cardiac remodeling and heart failure. METHODS: C57BL/6 mice were intraperitoneally injected with streptozotocin to induce DCM, and Ele was administered intragastric after 8 weeks to investigate the effect of Ele. RNA sequencing of cardiac tissue was performed to investigate the mechanism. RESULTS: Ele markedly inhibited cardiac inflammation, fibrosis and hypertrophy in diabetic mice, as well as in high glucose-induced cardiomyocytes. RNA sequencing showed that cardioprotective effect of Ele involved the JAK/STAT3-NF-κB signaling pathway. Ele alleviated heart and cardiomyocyte inflammation in mice by blocking diabetes-induced JAK2 and STAT3 phosphorylation and NF-κB activation. CONCLUSIONS: The study found that Ele preserved the hearts of diabetic mice by inhibiting JAK/STAT3 and NF-κB mediated inflammatory responses, suggesting that Ele is an effective therapy for DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Hiperglucemia , Ratones , Animales , FN-kappa B/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratones Endogámicos C57BL , Hiperglucemia/metabolismo , Miocitos Cardíacos , Inflamación/metabolismo
6.
Phytomedicine ; 116: 154846, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37172479

RESUMEN

BACKGROUND: Ginkgo biloba L., a kind of traditional Chinese medicine, is always used to treat various diseases. Ginkgetin is an active biflavonoid isolated from leaves of Ginkgo biloba L., which exhibits diverse biological activities, including anti-tumor, anti-microbial, anti-cardiovascular and cerebrovascular diseases, and anti-inflammatory effects. However, there are few reports on the effects of ginkgetin on ovarian cancer (OC). HYPOTHESIS/PURPOSE: OC is one of the most common cancers with high mortality in women. The purpose of this study was to find out how ginkgetin inhibited OC and which signal transduction pathways was involved to suppress OC. METHODS: The OC cell lines, A2780, SK-OV-3 and CP70, were used for in vitro experiments. MTT assay, colony formation, apoptosis assay, scratch wound assay and cell invasion assay were used to determine the inhibitory effect of ginkgetin. BALB/c nude female mice were injected with A2780 cells subcutaneously, then treated with ginkgetin by intragastric administration. Western blot experiment was used to verify the inhibitory mechanism of OC in vitro and in vivo. RESULTS: We found that ginkgetin inhibited the proliferation and induced apoptosis in OC cells. In addition, ginkgetin reduced migration and invasion of OC cells. In vivo study showed that ginkgetin significantly reduced tumor volume in the xenograft mouse model. Furthermore, the anti-tumor effects of ginkgetin were associated with a down regulation of p-STAT3, p-ERK and SIRT1 both in vitro and in vivo. CONCLUSION: Our results suggest that ginkgetin exhibits anti-tumor activity in OC cells via inhibiting the JAK2/STAT3 and MAPK pathways and SIRT1 protein. Ginkgetin could be a potential candidate for the treatment of OC.


Asunto(s)
Biflavonoides , Neoplasias Ováricas , Humanos , Femenino , Ratones , Animales , Biflavonoides/farmacología , Línea Celular Tumoral , Sirtuina 1/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Transducción de Señal , Apoptosis , Proliferación Celular , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo
7.
Phytother Res ; 37(6): 2353-2363, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36752025

RESUMEN

Obesity-induced metabolic disorders can cause chronic inflammation in the whole body, activating the nuclear factor kappa B (NF-κB) pathway and inducing apoptosis. Therefore, anti-inflammatory strategies may be effective in preventing obesity-related renal injury. Tabersonine (Tab) has been used pharmacologically to alleviate inflammation-related symptoms. This study evaluated the therapeutic effect of Tab on obesity-related renal injury and explored the pharmacological mechanism. Tab (20 mg/kg) relieved HFD-induced renal structural disorder and alleviated renal functional decline in mice, including improvement of renal tissue fibrosis, reducing renal cell apoptosis and inflammation in renal tissues. Mechanistically, we demonstrated that Tab inhibited the activation of NF-κB signaling pathway both in vivo and in vitro, thereby improving the renal tissue lesions in the mice with obesity-related renal injury. In both the obese mouse model and the mouse glomerular mesangial cell model, the natural compound Tab ameliorated HFD- and saturated fatty acid-induced renal cell injury by inhibiting the activation of NF-κB signaling pathway. Our data suggest that Tab may become a potential candidate for the prevention and treatment of obesity-related renal injury.


Asunto(s)
Enfermedades Renales , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Inflamación/patología , Riñón , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/patología , Enfermedades Renales/patología
8.
Cancer Biol Ther ; 24(1): 2162807, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36647192

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive biliary epithelial tumor with limited therapeutic options and poor prognosis. Curcumin is a promising active natural compound with several anti-cancer properties, though its clinical uses remain hindered due to its poor bioavailability. We recently synthesized curcumin analogs with multifunctional pharmacological and bioactivities with enhanced bioavailability. Among these novel curcumin analogs, WZ26 is a representative molecule. However, the anti-tumor effect of WZ26 against CCA is unclear. In this study, we evaluated the anti-tumor effect of WZ26 in both CCA cells and CCA xenograft mouse model. The underlying molecular anti-cancer mechanism of WZ26 was also studied. Our results show that WZ26 significantly inhibited cell growth and induced mitochondrial apoptosis in CCA cell lines, leading to significant inhibition of tumor growth in xenograft tumor mouse model. Treatment of WZ26 increased reactive oxygen species (ROS) generation, subsequently decreased mitochondrial membrane potential and inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inducing G2/M cell cycle arrest and cell apoptosis. Pretreatment of N-acetyl cysteine (NAC), an antioxidant agent, could fully reverse the WZ26-induced ROS-mediated changes in CCA cells. Our findings provide experimental evidence that curcumin analog WZ26 could be a potential candidate against CCA via enhancing ROS induction and inhibition of STAT3 activation.


Asunto(s)
Antineoplásicos , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Curcumina , Humanos , Animales , Ratones , Curcumina/farmacología , Curcumina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Muerte Celular , Apoptosis , Colangiocarcinoma/tratamiento farmacológico , Proliferación Celular , Puntos de Control de la Fase G2 del Ciclo Celular , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología
9.
Acta Pharmacol Sin ; 43(7): 1758-1768, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34737421

RESUMEN

Acute lung injury (ALI) is a sudden onset systemic inflammatory response. ALI causes severe morbidity and death and currently no effective pharmacological therapies exist. Natural products represent an excellent resource for discovering new drugs. Screening anti-inflammatory compounds from the natural product bank may offer viable candidates for molecular-based therapies for ALI. In this study, 165 natural compounds were screened for anti-inflammatory activity in lipopolysaccharide (LPS)-challenged macrophages. Among the screened compounds, flavokawain B (FKB) significantly reduced LPS-induced pro-inflammatory IL-6 secretion in macrophages. FKB also reduced the formation of LPS/TLR4/MD2 complex by competitively binding to MD2, suppressing downstream MAPK and NF-κB signaling activation. Finally, FKB treatment of mice reduced LPS-induced lung injury, systemic and local inflammatory cytokine production, and macrophage infiltration in lungs. These protective activities manifested as increased survival in the ALI model, and reduced mortality upon bacterial infection. In summary, we demonstrate that the natural product FKB protects against LPS-induced lung injury and sepsis by interacting with MD2 and inhibiting inflammatory responses. FKB may potentially serve as a therapeutic option for the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Productos Biológicos , Antígeno 96 de los Linfocitos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Flavonoides , Lipopolisacáridos , Pulmón/metabolismo , Ratones , FN-kappa B/metabolismo
10.
Physiol Rev ; 102(2): 605-652, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34569264

RESUMEN

Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective antifibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver, and skin. In this review, we summarize data from randomized controlled trials (RCTs) of antifibrotic therapies in these conditions. Multiple compounds have been tested for antifibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators, and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.


Asunto(s)
Constricción Patológica/tratamiento farmacológico , Enfermedad de Crohn/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Constricción Patológica/diagnóstico , Enfermedad de Crohn/diagnóstico , Fibrosis/tratamiento farmacológico , Humanos , Inflamación/patología , Intestinos/efectos de los fármacos , Intestinos/patología
11.
Front Med (Lausanne) ; 8: 697338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869406

RESUMEN

Covid-19, Coronavirus disease 2019; ARDS, Acute respiratory distress syndrome; ECMO, Extracorporeal Membrane Oxygenation; WHO, World Health Organization; ICUs, Intensive care units. Acute respiratory distress syndrome (ARDS) is a fatal comorbidity of critically ill patients with COVID-19, who often end up on respiratory support. However, the safety and effectiveness of Extracorporeal Membrane Oxygenation (ECMO) in the treatment of COVID-19 remains to be elucidated at present. Here, we report on nine patients who received ECMO due to severe SARS-CoV-2 infection in Wuhan, China. Our initial experiences suggest that carefully selecting patients, as well as management by a well-trained team, are critical to implementing ECMO in patients with COVID-19. More randomized controlled trials with larger sample sizes are needed to evaluate the usefulness of ECMO in patients with COVID-19.

12.
Blood Purif ; 50(4-5): 499-505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33291098

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is associated with increased mortality in patients with acute respiratory distress syndrome (ARDS). However, the epidemiological features and outcomes of AKI among COVID-19 patients with ARDS are unknown. METHODS: We retrospectively recruited consecutive adult COVID-19 patients who were diagnosed with ARDS according to Berlin definition from 13 designated intensive care units in the city of Wuhan, China. Potential risk factors of AKI as well as the relation between AKI and in-hospital mortality were investigated. RESULTS: A total of 275 COVID-19 patients with ARDS were included in the study, and 49.5% of them developed AKI during their hospital stay. In comparison with patients without AKI, patients who developed AKI were older, tended to have chronic kidney disease, had higher Sepsis-Related Organ Failure Assessment score on day 1, and were more likely to receive invasive ventilation and develop acute organ dysfunction. Multivariate analysis showed that age, history of chronic kidney disease, neutrophil-to-lymphocyte ratio, and albumin level were independently associated with the occurrence of AKI. Importantly, increasing AKI severity was associated with increased in-hospital mortality when adjusted for other potential variables: odds ratio of stage 1 = 5.374 (95% CI: 2.147-13.452; p < 0.001), stage 2 = 6.216 (95% CI: 2.011-19.210; p = 0.002), and stage 3 = 34.033 (95% CI: 9.723-119.129; p < 0.001). CONCLUSION: In this multicenter retrospective study, we found that nearly half of COVID-19 patients with ARDS experienced AKI during their hospital stay. The coexistence of AKI significantly increased the mortality of these patients.


Asunto(s)
Lesión Renal Aguda/epidemiología , COVID-19/complicaciones , Mortalidad Hospitalaria , Síndrome de Dificultad Respiratoria/etiología , SARS-CoV-2 , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Lesión Renal Aguda/terapia , Anciano , China/epidemiología , Comorbilidad , Creatinina/sangre , Femenino , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/complicaciones , Respiración Artificial/efectos adversos , Respiración Artificial/estadística & datos numéricos , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos , Factores de Riesgo
14.
J Investig Med ; 68(7): 1261-1270, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32655013

RESUMEN

Acute kidney injury (AKI) is a complication of COVID-19. However, the incidence of AKI in COVID-19 varies among studies. Thus, we aimed to evaluate the pooled incidence of AKI and its association with mortality in patients with COVID-19 using a meta-analysis. We search Ovid MEDLINE, EMBASE, and the Cochrane Library for eligible publications reporting the clinical characteristics of patients with COVID-19 without language restriction. Incidence of AKI and mortality were reported. Meta-regression was used to describe the association between outcomes. From 26 studies (n=5497), the pooled incidence of AKI in patients with COVID-19 was 8.4% (95% CI 6.0% to 11.7%) with a pooled incidence of renal replacement therapy of 3.6% (95% CI 1.8% to 7.1%). The incidence of AKI was higher in critically ill patients (19.9%) compared with hospitalized patients (7.3%). The pooled estimated odds ratio for mortality from AKI was 13.33 (95% CI 4.05 to 43.91). No potential publication bias was detected. By using meta-regression analyses, the incidence of AKI was positively associated with mortality after adjusted for age and sex (Q=26.18; p=0.02). Moreover, age (p<0.01), diabetes (p=0.02), hypertension (p<0.01) and baseline serum creatinine levels (p=0.04) were positively associated with AKI incidence in adjusted models. In conclusion, AKI is present in 8.3% of overall patients with COVID-19 and in 19.9% of critically ill patients with COVID-19. Presence of AKI is associated with 13-fold increased risk of mortality. Age, diabetes, hypertension, and baseline serum creatinine levels are associated with increased AKI incidence.


Asunto(s)
Lesión Renal Aguda/epidemiología , Betacoronavirus , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/mortalidad , Neumonía Viral/complicaciones , Neumonía Viral/mortalidad , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/virología , COVID-19 , Humanos , Incidencia , Pandemias , SARS-CoV-2
16.
Chemosphere ; 203: 474-481, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29635159

RESUMEN

Due to sea water eutrophication and global warming, the harmful Phaeocystis blooms outbreak frequently in coastal waters, which cause a serious threat to marine ecosystem. The application of rotifer to control the harmful alga is a promising way. To investigate the influence of initial rotifer density and temperature on the ability of rotifer Brachionus plicatilis to eliminate Phaeocystis globosa population, we cultured P. globosa with different initial rotifer densities (1, 3, 5 inds mL-1) at 19, 22, 25, 28, and 31 °C for 9-16 d. Results showed that the population of rotifer feeding on Phaeocystis increased rapidly and higher temperatures favored the growth of P. globosa and B. plicatilis. With increased initial rotifer density and temperature, both the clearance rate of rotifer and the reduction rate of P. globosa increased, and thus P. globosa were eliminated earlier. Both temperature and initial rotifer density had significant effects on clearance rate of rotifer and the time to Phaeocystis extinction, and there was a significant interaction between the two factors on the two parameters, i.e., the effect of initial rotifer density on eliminating Phaeocystis decreased with increasing temperature. The rotifer in 5 inds mL-1 at 28 °C eliminated P. globosa in 4 d, whereas the rotifer in 1 ind mL-1 at 19 °C spent about 16 d on eliminating P. globosa. In conclusion, higher temperature and bigger initial rotifer density promote rotifer to eliminate the harmful P. globosa, and the optimal temperature for rotifer to clear P. globosa is 28 °C.


Asunto(s)
Eutrofización , Haptophyta/fisiología , Densidad de Población , Rotíferos/fisiología , Temperatura , Animales , Agua de Mar
17.
Oncol Lett ; 14(6): 8100-8105, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29344254

RESUMEN

3'3-Diindolylmethane (DIM) has been proved to exhibit anticancer properties in many solid tumors. In our previous study, we demonstrated that DIM inhibited SGC7901 cell proliferation by inducing apoptosis and delaying cell cycle progression. Herein, we further explored the anti-tumor effect of DIM on SGC-7901 tumor bearing mice. Tumors were excised, weighed, and tested by western blot and TdT-UTP nick-end labeling (TUNEL) assay. Blood samples were collected for biochemical analysis. The expression levels of AhR and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) protein were evaluated by western-blot assay. Our data show that with the increase of DIM dose (0, 5, 10, 20 mg/kg/day), AhR protein gradually decreased as CYP1A1 protein increased. The weight of the tumors found in the treated animals was significantly lower than that of the control group (0.845±0.096 vs. 1.275±0.236 g, 0.768±0.161 vs. 1.275±0.236 g, 0.607±0.106 vs. 1.275±0.236 g, P<0.05). TUNEL test showed that DIM induced increased apoptosis in the treatment groups in a dose-dependent manner. Blood tests also indicated that DIM showed no toxic effect on animal weight or liver and kidney function. These results indicated that DIM agent could be a safe and potent drug in therapy of gastric cancer.

18.
Expert Rev Gastroenterol Hepatol ; 11(2): 149-156, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27937041

RESUMEN

INTRODUCTION: Pancreatic cancer is an aggressive carcinoma of the digestive system and radical resection, which is available to very few patients, is the only possibility for cure. Since therapeutic choices are limited at the advanced stage, screening and early diagnostic tools are indispensable for a better prognosis. Areas covered: This review illustrates serologic and imaging examinations, and carbohydrate antigens, microRNAs, methylation biomarkers, molecules in exosomes, ultrasound, computed tomography, magnetic resonance imaging, positron emission tomography and endoscopic retrograde cholangiopancreatography, among other topics. No matter which approach is used, the accuracy of early diagnosis is extremely low. Combining different methods greatly improves the accuracy of early diagnosis. This review was conducted utilizing PubMed with key search words pancreatic cancer, early diagnosis, biomarkers and imaging. Expert commentary: Appropriate combination of biomarkers and imaging technologies will become standard practice in the future. Because the incidence of and mortality from pancreatic cancer is rising, further study of new approaches for the early detection of pancreatic tumors is essential.


Asunto(s)
Detección Precoz del Cáncer/métodos , Neoplasias Pancreáticas/diagnóstico , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Metilación de ADN , Exosomas/metabolismo , Humanos , MicroARNs/genética , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/genética , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados
19.
Tumour Biol ; 37(9): 12403-12410, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27323966

RESUMEN

Epithelial-mesenchymal transition (EMT) plays an important role in metastasis of gastric cancer. Our previous study showed that Gastrokine-2 (GKN2) can inhibit the metastasis of SGC-7901 and AGS cells. Herein, we further explored the role of GKN2 in epithelial mesenchymal transition of gastric cancer cells and the underlying mechanisms. We found that overexpression of GKN2 can lower the protein expression level of Snail and markedly elevate E-cadherin protein level in SGC7901 and AGS cells. Further data showed that knockdown of snail can inhibit the migration and invasion of SGC-7901 and AGS cells. It is known that Snail can be phosphorylated by GSK3ß, a downstream protein of PI3K/AKT pathway. We then test protein expression of p-GSK3ß(Ser-9), the downstream protein of PI3K/AKT, which was significantly decreased under the circumstance of GKN2 overexpression. Moreover, LY294002, a PI3K inhibitor, can reverse the protein expression change of E-cadherin and snail induced by siGKN2. Taken together, these findings suggested that GKN2 suppressed epithelial mesenchymal transition of gastric cancer cells by downregulation of snail through PI3K/AKT/GSK3ß signaling pathway.


Asunto(s)
Proteínas Portadoras/fisiología , Transición Epitelial-Mesenquimal , Glucógeno Sintasa Quinasa 3 beta/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal/fisiología , Neoplasias Gástricas/patología , Antígenos CD , Cadherinas/fisiología , Línea Celular Tumoral , Humanos , Factores de Transcripción de la Familia Snail/fisiología
20.
Oncotarget ; 7(23): 35119-31, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27147566

RESUMEN

Bladder cancer is one of the most common malignancies of the urinary system, and the 5-year survival rate remains low. A comprehensive understanding of the carcinogenesis and progression of bladder cancer is urgently needed to advance treatment. c-Jun N-terminal kinase-2 (JNK2) exhibits both tumor promoter and tumor suppressor actions, depending on tumor type. Here, we analyzed the JNK2 function in bladder cancer. Using gene expression microarrays, we demonstrated that JNK2 mRNA is downregulated in an orthotopic rat model of bladder cancer. JNK2 protein levels were lower in rat and human bladder cancer tissues than in normal tissues, and the levels correlated with those of p53. Moreover, JNK2 phosphorylated p53 at Thr-81, thus protecting p53 from MDM2-induced proteasome degradation. Decreased expression of JNK2 in T24 cells conferred resistance to cell death induced by mitomycin C. Furthermore, lower JNK2 expression was associated with poorer overall survival among patients who underwent radical cystectomy. These results indicate that JNK2 acts as a tumor suppressor in bladder cancer, and that decreased JNK2 expression promotes bladder cancer tumorigenesis.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma de Células Transicionales/patología , Resistencia a Antineoplásicos/fisiología , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Adulto , Anciano , Animales , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/mortalidad , Regulación hacia Abajo , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estabilidad Proteica , Ratas , Ratas Sprague-Dawley , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...