RESUMEN
In plants, the conserved plant-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) perceives ultraviolet-B (UV-B) light and mediates UV-B-induced photomorphogenesis and stress acclimation. In this study, we reveal that UV-B light treatment shortens seedlings, increases stem thickness, and enhances UV-B stress tolerance in rice (Oryza sativa) via its two UV-B photoreceptors OsUVR8a and OsUVR8b. Although the rice and Arabidopsis (Arabidopsis thaliana) UVR8 (AtUVR8) photoreceptors all form monomers in response to UV-B light, OsUVR8a, and OsUVR8b function is only partially conserved with respect to AtUVR8 in UV-B-induced photomorphogenesis and stress acclimation. UV-B light and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) promote the nuclear accumulation of AtUVR8; by contrast, OsUVR8a and OsUVR8b constitutively localize to the nucleus via their own nuclear localization signals, independently of UV-B light and the RING-finger mutation of OsCOP1. We show that OsCOP1 negatively regulates UV-B responses, and shows weak interaction with OsUVR8s, which is ascribed to the N terminus of OsCOP1, which is conserved in several monocots. Furthermore, transcriptome analysis demonstrates that UV-B-responsive gene expression differs globally between Arabidopsis and rice, illuminating the evolutionary divergence of UV-B light signaling pathways between monocot and dicot plants.
Asunto(s)
Arabidopsis , Núcleo Celular , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Rayos Ultravioleta , Oryza/metabolismo , Oryza/genética , Oryza/efectos de la radiación , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Arabidopsis/genética , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Plantones/efectos de la radiación , Plantones/metabolismo , Plantones/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutación , Plantas Modificadas Genéticamente , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genéticaRESUMEN
While it is well known that plants interpret UV-B as an environmental cue and a potential stressor influencing their growth and development, the specific effects of UV-B-induced oxidative stress on the dynamics of membrane lipids and proteins remain underexplored. Here, we demonstrate that UV-B exposure notably increases the formation of ordered lipid domains on the plasma membrane (PM) and significantly alters the behavior of the Glycine max nodule autoregulation receptor kinase (GmNARK) protein in Arabidopsis leaves. The GmNARK protein was located on the PM and accumulated as small particles in the cytoplasm. We found that UV-B irradiation interrupted the lateral diffusion of GmNARK proteins on the PM. Furthermore, UV-B light decreases the efficiency of surface molecule internalization by clathrin-mediated endocytosis (CME). In brief, UV-B irradiation increased the proportion of the ordered lipid phase and disrupted clathrin-dependent endocytosis; thus, the endocytic trafficking and lateral mobility of GmNARK protein on the plasma membrane are crucial for nodule formation tuning. Our results revealed a novel role of low-intensity UV-B stress in altering the organization of the plasma membrane and the dynamics of membrane-associated proteins.
RESUMEN
Legume nodulation requires light perception by plant shoots and precise long-distance communication between shoot and root. Recent studies have revealed that TGACG-motif binding factors (GmSTFs) integrate light signals to promote root nodulation; however, the regulatory mechanisms underlying nodule formation in changing light conditions remain elusive. Here, we applied genetic engineering, metabolite measurement, and transcriptional analysis to study soybean (Glycine max) nodules. We clarify a fine-tuning mechanism in response to ultraviolet B (UV-B) irradiation and rhizobia infection, involving GmUVR8-dependent UV-B perception and GmSTF3/4-GmMYB12-GmCHS-mediated (iso)flavonoid biosynthesis for soybean nodule formation. GmUVR8 receptor-perceived UV-B signal triggered R2R3-MYB transcription factors GmMYB12-dependent flavonoid biosynthesis separately in shoot and root. In shoot, UV-B-triggered flavonoid biosynthesis relied on GmUVR8a, b, c receptor-dependent activation of GmMYB12L-GmCHS8 (chalcone synthase) module. In root, UV-B signaling distinctly promotes the accumulation of the isoflavones, daidzein, and its derivative coumestrol, via GmMYB12B2-GmCHS9 module, resulting in hypernodulation. The mobile transcription factors, GmSTF3/4, bind to cis-regulatory elements in the GmMYB12L, GmMYB12B2, and GmCHS9 promoters, to coordinate UV-B light perception in shoot and (iso)flavonoid biosynthesis in root. Our findings establish a novel shoot-to-root communication module involved in soybean nodulation and reveal an adaptive strategy employed by soybean roots in response to UV-B light.
Asunto(s)
Glycine max , Transducción de Señal , Glycine max/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Comunicación , Nodulación de la Raíz de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Non-damaging ultraviolet B (UV-B) light promotes photomorphogenic development and stress acclimation through UV-B-specific signal transduction in Arabidopsis. UV-B irradiation induces monomerization and nuclear translocation of the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8). However, it is not clear how the nuclear localization of UVR8 leads to changes in global gene expression. Here, we reveal that nuclear UVR8 governs UV-B-responsive transcriptional networks in concert with several previously known transcription factors, including ELONGATED HYPOCOTYL 5 (HY5) and PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Based on the transcriptomic analysis, we identify MYB13 as a novel positive regulator in UV-B-induced cotyledon expansion and stress acclimation. MYB13 is UV-B inducible and is predominantly expressed in the cotyledons. Our results demonstrate that MYB13 protein functions as a transcription factor to regulate the expression of genes involved in auxin response and flavonoid biosynthesis through direct binding with their promoters. In addition, photoactivated UVR8 interacts with MYB13 in a UV-B-dependent manner and differentially modulates the affinity of MYB13 with its targets. Taken together, our results elucidate the cooperative function of the UV-B photoreceptor UVR8 with various transcription factors in the nucleus to orchestrate the expression of specific sets of downstream genes and, ultimately, mediate plant responses to UV-B light.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Factores de Transcripción/metabolismo , Transcripción Genética , Rayos Ultravioleta , Aclimatación/genética , Vías Biosintéticas/genética , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Cotiledón/crecimiento & desarrollo , Flavonoides/biosíntesis , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Regiones Promotoras Genéticas , Unión Proteica , Estrés Fisiológico/genética , Transcriptoma/genéticaRESUMEN
Photomorphogenesis is a pivotal developmental strategy used by plants to respond to environmental light levels. During emergence from the soil and the establishment of photomorphogenesis, seedlings encounter increasing levels of UV-B irradiation and develop adaptive responses accordingly. However, the molecular mechanisms that orchestrate UV-B signaling cascades remain elusive. Here, we provide biochemical and genetic evidence that the prolonged signaling circuits of UV-B-induced photomorphogenesis involve two sets of E3 ligases and a transcription factor in Arabidopsis thaliana The UV-B-inducible protein RUP1/RUP2 associates with the CUL4-DDB1 scaffold to form an E3 ligase, which represses photomorphogenesis by mediating the degradation of HY5, the hub transcription factor in the light signaling pathway. Conversely, COP1 directly targets RUP1/RUP2 for ubiquitination and degradation, leading to balanced RUP1/RUP2 accumulation, alleviation of the COP1-HY5 interaction, and stabilization of HY5 protein. Therefore, our study reveals that these two E3-substrate modules, CUL4-DDB1-RUP1/RUP2-HY5 and COP1-RUP1/RUP2, constitute the repression and derepression machinery by which plants respond to prolonged UV-B irradiation in photomorphogenic development.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/efectos de la radiación , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Rayos UltravioletaAsunto(s)
Arabidopsis/metabolismo , Rayos Ultravioleta , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/efectos de la radiación , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/genética , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiaciónRESUMEN
The multidrug and toxic compound extrusion (MATE) transporters mediate the coupled exchange of organic substrates and monovalent cations have been recently implicated in various plant biological activities. In this work, we isolated a dominant mutant from an Arabidopsis activation-tagging mutant pool. This mutant exhibits pleiotropic phenotype including early flowering, dwarf and bushy architecture, minified lateral organs and early leaf senescence, and is therefore designated early leaf senescence 1-Dominaint (els1-D). Genotyping assays showed that els1-D is a gain-of-function mutant of a novel MATE transporter gene, ELS1, which encodes a close homolog of the previously reported ADP1, BCD1 and DTX50. Further investigations revealed that the overexpression of ELS1 reduces iron content in els1-D, and the accelerated senescence of the detached els1-D leaves can be recovered by exogenous iron supply. In addition, we also found that ELS1 is an iron responsive gene. Based on these findings, we proposed that ELS1 is related to leaf senescence and iron homeostasis in Arabidopsis.