Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(6): nwae188, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38962716

RESUMEN

Transposable elements (TEs) are ubiquitous genomic components and hard to study due to being highly repetitive. Here we assembled 232 chromosome-level genomes based on long-read sequencing data. Coupling the 232 genomes with 15 existing assemblies, we developed a pan-TE map comprising both cultivated and wild Asian rice. We detected 177 084 high-quality TE variations and inferred their derived state using outgroups. We found TEs were one source of phenotypic variation during rice domestication and differentiation. We identified 1246 genes whose expression variation was associated with TEs but not single-nucleotide polymorphisms (SNPs), such as OsRbohB, and validated OsRbohB's relative expression activity using a dual-Luciferase (LUC) reporter assays system. Our pan-TE map allowed us to detect multiple novel loci associated with agronomic traits. Collectively, our findings highlight the contributions of TEs to domestication, differentiation and agronomic traits in rice, and there is massive potential for gene cloning and molecular breeding by the high-quality Asian pan-TE map we generated.

2.
Plant Cell ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916914

RESUMEN

Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one fifth of potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.

4.
J Integr Plant Biol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940609

RESUMEN

Tiller angle is a key agricultural trait that establishes plant architecture, which in turn strongly affects grain yield by influencing planting density in rice. The shoot gravity response plays a crucial role in the regulation of tiller angle in rice, but the underlying molecular mechanism is largely unknown. Here, we report the identification of the BIG TILLER ANGLE2 (BTA2), which regulates tiller angle by controlling the shoot gravity response in rice. Loss-of-function mutation of BTA2 dramatically reduced auxin content and affected auxin distribution in rice shoot base, leading to impaired gravitropism and therefore a big tiller angle. BTA2 interacted with AUXIN RESPONSE FACTOR7 (ARF7) to modulate rice tiller angle through the gravity signaling pathway. The BTA2 protein was highly conserved during evolution. Sequence variation in the BTA2 promoter of indica cultivars harboring a less expressed BTA2 allele caused lower BTA2 expression in shoot base and thus wide tiller angle during rice domestication. Overexpression of BTA2 significantly increased grain yield in the elite rice cultivar Huanghuazhan under appropriate dense planting conditions. Our findings thus uncovered the BTA2-ARF7 module that regulates tiller angle by mediating the shoot gravity response. Our work offers a target for genetic manipulation of plant architecture and valuable information for crop improvement by producing the ideal plant type.

5.
Natl Sci Rev ; 11(4): nwae043, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38650829

RESUMEN

For sessile plants, gene expression plays a pivotal role in responding to salinity stress by activating or suppressing specific genes. However, our knowledge of genetic variations governing gene expression in response to salt stress remains limited in natural germplasm. Through transcriptome analysis of the Global Mini-Core Rice Collection consisting of a panel of 202 accessions, we identified 22 345 and 27 610 expression quantitative trait loci associated with the expression of 7787 and 9361 eGenes under normal and salt-stress conditions, respectively, leveraging the super pan-genome map. Notably, combined with genome-wide association studies, we swiftly pinpointed the potential candidate gene STG5-a major salt-tolerant locus known as qSTS5. Intriguingly, STG5 is required for maintaining Na+/K+ homeostasis by directly regulating the transcription of multiple members of the OsHKT gene family. Our study sheds light on how genetic variants influence the dynamic changes in gene expression responding to salinity stress and provides a valuable resource for the mining of salt-tolerant genes in the future.

7.
Plant Physiol ; 194(4): 2354-2371, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38060676

RESUMEN

Temperature-sensitive male sterility is one of the core components for hybrid rice (Oryza sativa) breeding based on the 2-line system. We previously found that knockout of ARGONAUTE 1d (AGO1d) causes temperature-sensitive male sterility in rice by influencing phased small interfering RNA (phasiRNA) biogenesis and function. However, the specific phasiRNAs and their targets underlying the temperature-sensitive male sterility in the ago1d mutant remain unknown. Here, we demonstrate that the ago1d mutant displays normal female fertility but complete male sterility at low temperature. Through a multiomics analysis of small RNA (sRNA), degradome, and transcriptome, we found that 21-nt phasiRNAs account for the greatest proportion of the 21-nt sRNA species in rice anthers and are sensitive to low temperature and markedly downregulated in the ago1d mutant. Moreover, we found that 21-nt phasiRNAs are essential for the mRNA cleavage of a set of fertility- and cold tolerance-associated genes, such as Earlier Degraded Tapetum 1 (EDT1), Tapetum Degeneration Retardation (TDR), OsPCF5, and OsTCP21, directly or indirectly determined by AGO1d-mediated gene silencing. The loss of function of 21-nt phasiRNAs can result in upregulation of their targets and causes varying degrees of defects in male fertility and grain setting. Our results highlight the essential functions of 21-nt phasiRNAs in temperature-sensitive male sterility in rice and suggest their promising application in 2-line hybrid rice breeding in the future.


Asunto(s)
Infertilidad Masculina , Oryza , Masculino , Humanos , Oryza/genética , Oryza/metabolismo , Nucleótidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Temperatura , ARN de Planta/genética , Fitomejoramiento , ARN Interferente Pequeño/genética , Regulación de la Expresión Génica de las Plantas
8.
J Integr Plant Biol ; 66(2): 196-207, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158885

RESUMEN

Rice (Oryza sativa) is a significant crop worldwide with a genome shaped by various evolutionary factors. Rice centromeres are crucial for chromosome segregation, and contain some unreported genes. Due to the diverse and complex centromere region, a comprehensive understanding of rice centromere structure and function at the population level is needed. We constructed a high-quality centromere map based on the rice super pan-genome consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. We showed that rice centromeres have diverse satellite repeat CentO, which vary across chromosomes and subpopulations, reflecting their distinct evolutionary patterns. We also revealed that long terminal repeats (LTRs), especially young Gypsy-type LTRs, are abundant in the peripheral CentO-enriched regions and drive rice centromere expansion and evolution. Furthermore, high-quality genome assembly and complete telomere-to-telomere (T2T) reference genome enable us to obtain more centromeric genome information despite mapping and cloning of centromere genes being challenging. We investigated the association between structural variations and gene expression in the rice centromere. A centromere gene, OsMAB, which positively regulates rice tiller number, was further confirmed by expression quantitative trait loci, haplotype analysis and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 methods. By revealing the new insights into the evolutionary patterns and biological roles of rice centromeres, our finding will facilitate future research on centromere biology and crop improvement.


Asunto(s)
ADN Satélite , Oryza , ADN Satélite/metabolismo , Oryza/genética , Oryza/metabolismo , Secuencia de Bases , Centrómero/genética , Genoma de Planta/genética
9.
Plant Commun ; 5(4): 100789, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38160258

RESUMEN

Plants are constantly exposed to microbial pathogens in the environment. One branch of innate plant immunity is mediated by cell-membrane-localized receptors, but less is known about associations between DNA damage and plant immune responses. Here, we show that rice (Oryza sativa) mesophyll cells are prone to DNA double-stranded breaks (DSBs) in response to ZJ173, a strain of Xanthomonas oryzae pv. oryzae (Xoo). The DSB signal transducer ataxia telangiectasia mutated (ATM), but not the ATM and Rad3-related branch, confers resistance against Xoo. Mechanistically, the MRE11-ATM module phosphorylates suppressor of gamma response 1 (SOG1), which activates several phenylpropanoid pathway genes and prompts downstream phytoalexin biosynthesis during Xoo infection. Intriguingly, overexpression of the topoisomerase gene TOP6A3 causes a switch from the classic non-homologous end joining (NHEJ) pathway to the alternative NHEJ and homologous recombination pathways at Xoo-induced DSBs. The enhanced ATM signaling of the alternative NHEJ pathway strengthens the SOG1-regulated phenylpropanoid pathway and thereby boosts Xoo-induced phytoalexin biosynthesis in TOP6A3-OE1 overexpression lines. Overall, the MRE11-ATM-SOG1 pathway serves as a prime example of plant-pathogen interactions that occur via host non-specific recognition. The function of TOP6-facilitated ATM signaling in the defense response makes it a promising target for breeding of rice germplasm that exhibits resistance to bacterial blight disease without a growth penalty.


Asunto(s)
Ataxia Telangiectasia , Oryza , Xanthomonas , Oryza/metabolismo , Fitoalexinas , Transducción de Señal
10.
Mitochondrial DNA B Resour ; 8(12): 1373-1376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130735

RESUMEN

The complete Neuroctenus yunnanensis Hsiao, 1964, mitogenome was sequenced using an Illumina NovaSeq platform and submitted to GenBank (accession number: ON507991). The mitochondrial genome is a typical circular DNA molecule of 15,283 bp with 37 genes, including 22 tRNA genes, 13 protein-coding genes (PCGs), two rRNA genes, and a control region. Phylogenetic reconstruction validated the taxonomic status of N. yunnanensis, which was placed in the Mezirinae subfamily (Aradidae) and most closely related to N. parus. The mitochondrial genome data of N. yunnanensis provides a basis for genetic research.

11.
Nucleic Acids Res ; 51(20): 10924-10933, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37843097

RESUMEN

Detailed knowledge of the genetic variations in diverse crop populations forms the basis for genetic crop improvement and gene functional studies. In the present study, we analyzed a large rice population with a total of 10 548 accessions to construct a rice super-population variation map (RSPVM), consisting of 54 378 986 single nucleotide polymorphisms, 11 119 947 insertion/deletion mutations and 184 736 presence/absence variations. Assessment of variation detection efficiency for different population sizes revealed a sharp increase of all types of variation as the population size increased and a gradual saturation of that after the population size reached 10 000. Variant frequency analysis indicated that ∼90% of the obtained variants were rare, and would therefore likely be difficult to detect in a relatively small population. Among the rare variants, only 2.7% were predicted to be deleterious. Population structure, genetic diversity and gene functional polymorphism of this large population were evaluated based on different subsets of RSPVM, demonstrating the great potential of RSPVM for use in downstream applications. Our study provides both a rich genetic basis for understanding natural rice variations and a powerful tool for exploiting great potential of rare variants in future rice research, including population genetics and functional genomics.


Asunto(s)
Variación Genética , Oryza , Genética de Población , Genómica , Oryza/genética , Polimorfismo de Nucleótido Simple
12.
J Integr Plant Biol ; 65(12): 2541-2551, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37728044

RESUMEN

Continuously increasing global temperatures present great challenges to food security. Grain size, one of the critical components determining grain yield in rice (Oryza sativa L.), is a prime target for genetic breeding. Thus, there is an immediate need for genetic improvement in rice to maintain grain yield under heat stress. However, quantitative trait loci (QTLs) endowing heat stress tolerance and grain size in rice are extremely rare. Here, we identified a novel negative regulator with pleiotropic effects, Thermo-Tolerance and grain Length 1 (TTL1), from the super pan-genomic and transcriptomic data. Loss-of-function mutations in TTL1 enhanced heat tolerance, and caused an increase in grain size by coordinating cell expansion and proliferation. TTL1 was shown to function as a transcriptional regulator and localized to the nucleus and cell membrane. Furthermore, haplotype analysis showed that hapL and hapS of TTL1 were obviously correlated with variations of thermotolerance and grain size in a core collection of cultivars. Genome evolution analysis of available rice germplasms suggested that TTL1 was selected during domestication of the indica and japonica rice subspecies, but still had much breeding potential for increasing grain length and thermotolerance. These findings provide insights into TTL1 as a novel potential target for the development of high-yield and thermotolerant rice varieties.


Asunto(s)
Oryza , Termotolerancia , Oryza/genética , Termotolerancia/genética , Fenotipo , Fitomejoramiento , Grano Comestible/genética
14.
Mitochondrial DNA B Resour ; 8(4): 512-514, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091577

RESUMEN

The complete mitochondrial genome of Brachyrhynchus triangulus Bergroth, 1889 was sequenced and annotated in the present study. It was a typical circular DNA molecule of 15,170 bp, with 37 genes and a control region. The percentages of A, C, G, and T nucleotides in the genome of B. triangulus were 41.1%, 17.4%, 11.9%, and 29.4%, respectively. Thirteen protein-coding genes (PCGs) start with a ATN codon or a TTG codon and terminate with a TAA codon or a TAG codon or a single T residue. With the exception of tRNASer(AGN) , each of the 22 tRNA genes had a clover-leaf structure and ranged in length from 62 to 69 bp. The length of lrRNA and srRNA was 1241 bp and 828 bp, respectively. The control region had a length of 708 bp and an A + T content of 74.6%. The sister relationship between B. triangulus and Brachyrhynchus hsiaoi is supported by the phylogenetic tree. Additionally, it proved the sister relationship between Mezirinae and Aneurinae, supporting the classical taxonomy of the Aradidae.

15.
Mitochondrial DNA B Resour ; 6(4): 1310-1312, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33855185

RESUMEN

The complete Eclipophleps carinata mitogenome was sequenced through Illumina HiSeq 2500 platform and the resulting data were analyzed in this paper. The mitochondrial genome of E. carinata is a typical circular DNA molecule of 15,781 bp with 37 genes and 74.5% A + T content, which encoded 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and the control region. The E. carinata mitochondrial genome and 27 mitochondrial genomes (downloaded from NCBI) were employed to construct phylogenetic tree, in which Ruspolia dubia and Teleogryllus occipitails were the outgroups. Phylogenetic reconstruction validated the taxonomic status of E. carinata, which was placed in the monophyletic Gomphocerinae in Acrididae.

16.
Zootaxa ; 4623(3): zootaxa.4623.3.4, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31716248

RESUMEN

A new apterous genus, Rotundocoris gen. nov., and two included new species, R. stenonotum sp. nov. and R. obliquonotum sp. nov. (Hemiptera: Heteroptera: Aradidae: Carventinae), are described from Hainan, China. The diagnostic morphological features of the genus and its two species are discussed and illustrated.


Asunto(s)
Heterópteros , Distribución Animal , Animales , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...