Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 433, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773359

RESUMEN

BACKGROUND: Freezing stress is one of the major abiotic stresses that causes extensive damage to plants. LEA (Late embryogenesis abundant) proteins play a crucial role in plant growth, development, and abiotic stress. However, there is limited research on the function of LEA genes in low-temperature stress in Brassica napus (rapeseed). RESULTS: Total 306 potential LEA genes were identified in B. rapa (79), B. oleracea (79) and B. napus (148) and divided into eight subgroups. LEA genes of the same subgroup had similar gene structures and predicted subcellular locations. Cis-regulatory elements analysis showed that the promoters of BnaLEA genes rich in cis-regulatory elements related to various abiotic stresses. Additionally, RNA-seq and real-time PCR results indicated that the majority of BnaLEA family members were highly expressed in senescent tissues of rapeseed, especially during late stages of seed maturation, and most BnaLEA genes can be induced by salt and osmotic stress. Interestingly, the BnaA.LEA6.a and BnaC.LEA6.a genes were highly expressed across different vegetative and reproductive organs during different development stages, and showed strong responses to salt, osmotic, and cold stress, particularly freezing stress. Further analysis showed that overexpression of BnaA.LEA6.a increased the freezing tolerance in rapeseed, as evidenced by lower relative electrical leakage and higher survival rates compared to the wild-type (WT) under freezing treatment. CONCLUSION: This study is of great significance for understanding the functions of BnaLEA genes in freezing tolerance in rapeseed and offers an ideal candidate gene (BnaA.LEA6.a) for molecular breeding of freezing-tolerant rapeseed cultivars.


Asunto(s)
Brassica napus , Congelación , Proteínas de Plantas , Brassica napus/genética , Brassica napus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Familia de Multigenes , Genoma de Planta , Respuesta al Choque por Frío/genética
2.
Biotechnol Biofuels Bioprod ; 17(1): 29, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383469

RESUMEN

BACKGROUND: The primary objective of rapeseed breeding is to enhance oil content, which is predominantly influenced by environmental factors. However, the molecular mechanisms underlying the impact of these environmental factors on oil accumulation remain inadequately elucidated. In this study, we used transcriptome data from two higher (HOC) and two lower oil content (LOC) inbred lines at 35 days after pollination (DAP) to investigate genes exhibiting stable expression across three different environments. Meanwhile, a genome-wide association study (GWAS) was utilized to detect candidate genes exhibiting significant associations with seed oil content across three distinct environments. RESULTS: The study found a total of 405 stable differentially expressed genes (DEGs), including 25 involved in lipid/fatty acid metabolism and 14 classified as transcription factors. Among these genes, BnBZIP10-A09, BnMYB61-A06, BnAPA1-A08, BnPAS2-A10, BnLCAT3-C05 and BnKASIII-C09 were also found to exhibit significant associations with oil content across multiple different environments based on GWAS of 50 re-sequenced semi-winter rapeseed inbred lines and previously reported intervals. Otherwise, we revealed the presence of additive effects among BnBZIP10-A09, BnKASIII-C09, BnPAS2-A10 and BnAPA1-A08, resulting in a significant increase in seed oil content. Meanwhile, the majority of these stable DEGs are interconnected either directly or indirectly through co-expression network analysis, thereby giving rise to an elaborate molecular network implicated in the potential regulation of seed oil accumulation and stability. CONCLUSIONS: The combination of transcription and GWAS revealed that natural variation in six environment-insensitive gene regions exhibited significant correlations with seed oil content phenotypes. These results provide important molecular marker information for us to further improve oil content accumulation and stability in rapeseed.

3.
Plants (Basel) ; 11(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432869

RESUMEN

Rapeseed stores lipids in the form of oil bodies. Oil bodies in the seeds of higher plants are surrounded by oleosins. Adjusting oleosin protein levels can prevent the fusion of oil bodies and maintain oil body size during seed development. However, oil contents are affected by many factors, and studies on the complex molecular regulatory mechanisms underlying the variations in seed oil contents of B. napus are limited. In this study, a total of 53 BnOLEO (B. napus oleosin) genes were identified in the genome of B. napus through a genome-wide analysis. The promoter sequences of oleosin genes consisted of various light-, hormone-, and stress-related cis-acting elements, along with transcription factor (TF) binding sites, for 25 TF families in 53 BnOLEO genes. The differentially expressed oleosin genes between two high- and two low-oil-content accessions were explored. BnOLEO3-C09, BnOLEO4-A02, BnOLEO4-A09, BnOLEO2-C04, BnOLEO1-C01, and BnOLEO7-A03 showed higher expressions in the high-oil-content accessions than in low-oil-content accessions, at 25, 35, and 45 days after pollination (DAP) in two different environments. A regional association analysis of 50 re-sequenced rapeseed accessions was used to further analyze these six BnOLEO genes, and it revealed that the nucleotide variations in the BnOLEO1-C01 and BnOLEO7-A03 gene regions were related to the phenotypic variations in seed oil content. Moreover, a co-expression network analysis revealed that the BnOLEO genes were directly linked to lipid/fatty acid metabolism, TF, lipid transport, and carbohydrate genes, thus forming a molecular network involved in seed oil accumulation. These favorable haplotypes can be utilized in molecular marker-assisted selection in order to further improve seed oil contents in rapeseed.

4.
Plants (Basel) ; 11(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36079626

RESUMEN

Oil-body-membrane proteins (OBMPs) are essential structural molecules of oil bodies and also versatile metabolic enzymes involved in multiple cellular processes such as lipid metabolism, hormone signaling and stress responses. However, the global landscape for OBMP genes in oil crops is still lacking. Here, we performed genome-wide identification and characterization of OBMP genes in polyploid crop Brassica napus. B. napus contains up to 88 BnaOBMP genes including 53 oleosins, 20 caleosins and 15 steroleosins. Both whole-genome and tandem duplications have contributed to the expansion of the BnaOBMP gene family. These BnaOBMP genes have extensive sequence polymorphisms, and some harbor strong selection signatures. Various cis-acting regulatory elements involved in plant growth, phytohormones and abiotic and biotic stress responses are detected in their promoters. BnaOBMPs exhibit differential expression at various developmental stages from diverse tissues. Importantly, some BnaOBMP genes display spatiotemporal patterns of seed-specific expression, which could be orchestrated by transcriptional factors such as EEL, GATA3, HAT2, SMZ, DOF5.6 and APL. Altogether, our data lay the foundations for studying the regulatory mechanism of the seed oil storage process and provide candidate genes and alleles for the genetic improvement and breeding of rapeseed with high seed oil content.

5.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613968

RESUMEN

Histone deacetylases tuin (HDT) is a plant-specific protein subfamily of histone deacetylation enzymes (HDAC) which has a variety of functions in plant development, hormone signaling and stress response. Although the HDT family's genes have been studied in many plant species, they have not been characterized in Brassicaceae. In this study, 14, 8 and 10 HDT genes were identified in Brassica napus, Brassica rapa and Brassica oleracea, respectively. According to phylogenetic analysis, the HDTs were divided into four groups: HDT1(HD2A), HDT2(HD2B), HDT3(HD2C) and HDT4(HD2D). There was an expansion of HDT2 orthologous genes in Brassicaceae. Most of the HDT genes were intron-rich and conserved in gene structure, and they coded for proteins with a nucleoplasmin-like (NPL) domain. Expression analysis showed that B. napus, B. rapa, and B. oleracea HDT genes were expressed in different organs at different developmental stages, while different HDT subgroups were specifically expressed in specific organs and tissues. Interestingly, most of the Bna/Br/BoHDT2 members were expressed in flowers, buds and siliques, suggesting they have an important role in the development of reproductive organs in Brassicaceae. Expression of BnaHDT was induced by various hormones, such as ABA and ethylene treatment, and some subgroups of genes were responsive to heat treatment. The expression of most HDT members was strongly induced by cold stress and freezing stress after non-cold acclimation, while it was slightly induced after cold acclimation. In this study, the HDT gene family of Brassicaceae was analyzed for the first time, which helps in understanding the function of BnaHDT in regulating plant responses to abiotic stresses, especially freezing stresses.


Asunto(s)
Brassica napus , Brassica rapa , Filogenia , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Brassica napus/metabolismo , Brassica rapa/genética , Genes de Plantas , Familia de Multigenes , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
6.
Mol Breed ; 42(11): 69, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37313473

RESUMEN

Plant height is a key morphological trait in rapeseed, which not only plays an important role in determining plant architecture, but is also an important characteristic related to yield. Presently, the improvement of plant architecture is a major challenge in rapeseed breeding. This work was carried out to identify genetic loci related to plant height in rapeseed. In this study, a genome-wide association study (GWAS) of plant height was performed using a Brassica 60 K Illumina Infinium SNP array and 203 Brassica napus accessions. Eleven haplotypes containing important candidate genes were detected and significantly associated with plant height on chromosomes A02, A03, A05, A07, A08, C03, C06, and C09. Moreover, regional association analysis of 50 resequenced rapeseed inbred lines was used to further analyze these eleven haplotypes and revealed nucleotide variation in the BnFBR12-A08 and BnCCR1-C03 gene regions related to the phenotypic variation in plant height. Furthermore, coexpression network analysis showed that BnFBR12-A08 and BnCCR1-C03 were directly connected with hormone genes and transcription factors and formed a potential network regulating the plant height of rapeseed. Our results will aid in the development of haplotype functional markers to further improve plant height in rapeseed. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01337-1.

7.
Nat Genet ; 53(9): 1392-1402, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34493868

RESUMEN

Despite early domestication around 3000 BC, the evolutionary history of the ancient allotetraploid species Brassica juncea (L.) Czern & Coss remains uncertain. Here, we report a chromosome-scale de novo assembly of a yellow-seeded B. juncea genome by integrating long-read and short-read sequencing, optical mapping and Hi-C technologies. Nuclear and organelle phylogenies of 480 accessions worldwide supported that B. juncea is most likely a single origin in West Asia, 8,000-14,000 years ago, via natural interspecific hybridization. Subsequently, new crop types evolved through spontaneous gene mutations and introgressions along three independent routes of eastward expansion. Selective sweeps, genome-wide trait associations and tissue-specific RNA-sequencing analysis shed light on the domestication history of flowering time and seed weight, and on human selection for morphological diversification in this versatile species. Our data provide a comprehensive insight into the origin and domestication and a foundation for genomics-based breeding of B. juncea.


Asunto(s)
Evolución Biológica , Cromosomas de las Plantas/genética , Domesticación , Planta de la Mostaza/genética , Fitomejoramiento , Genoma de Planta/genética , Hibridación Genética/genética , Carácter Cuantitativo Heredable
8.
Plant Sci ; 310: 110980, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34315596

RESUMEN

Flowering is an important turning point from vegetative growth to reproductive growth, and vernalization is an essential condition for the flowering of annual winter plants. To investigate the genetic architecture of flowering time in rapeseed, we used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with flowering time in 203 Chinese semi-winter rapeseed inbred lines. Twenty-one haplotype regions carrying one or more candidate genes showed a significant association with flowering time. Interestingly, we detected a SNP (Bn-scaff_22728_1-p285715) located in exon 3 of the BnVIN3-C03 gene that showed a significant association with flowering time on chromosome C03. Based on the SNP alleles A and G, two groups of accessions with early and late flowering time phenotypes were selected, respectively, and PCR amplification and gene expression analysis were combined to reveal the structural variation of the BnVIN3-C03 gene that affected flowering time. Moreover, we found that BnVIN3-C03 inhibited the expression of BnFLC-A02, BnFLC-A03.1, BnFLC-A10 and BnFLC-C03.1, thus modulating the flowering time of Brassica napus. This result provides insight into the genetic improvement of flowering time in B. napus.


Asunto(s)
Brassica napus/genética , Estudio de Asociación del Genoma Completo/métodos , Transcriptoma/genética , Alelos , Mapeo Cromosómico , Flores/genética , Haplotipos/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo/genética
9.
Theor Appl Genet ; 134(5): 1545-1555, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33677638

RESUMEN

KEY MESSAGE: Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions in combination with co-expression analysis reveal candidate genes affecting oil accumulation in Brassica napus. One of the breeding goals in rapeseed production is to enhance the seed oil content to cater to the increased demand for vegetable oils due to a growing global population. To investigate the genetic basis of variation in seed oil content, we used 60 K Brassica Infinium SNP array along with phenotype data of 203 Chinese semi-winter rapeseed accessions to perform a genome-wide analysis of haplotype blocks associated with the oil content. Nine haplotype regions harbouring lipid synthesis/transport-, carbohydrate metabolism- and photosynthesis-related genes were identified as significantly associated with the oil content and were mapped to chromosomes A02, A04, A05, A07, C03, C04, C05, C08 and C09, respectively. Regional association analysis of 50 re-sequenced Chinese semi-winter rapeseed accessions combined with transcriptome datasets from 13 accessions was further performed on these nine haplotype regions. This revealed natural variation in the BnTGD3-A02 and BnSSE1-A05 gene regions correlated with the phenotypic variation of the oil content within the A02 and A04 chromosome haplotype regions, respectively. Moreover, co-expression network analysis revealed that BnTGD3-A02 and BnSSE1-A05 were directly linked with fatty acid beta-oxidation-related gene BnKAT2-C04, thus forming a molecular network involved in the potential regulation of seed oil accumulation. The results of this study could be used to combine favourable haplotype alleles for further improvement of the seed oil content in rapeseed.


Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/genética , Transcriptoma , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Fenotipo , Fitomejoramiento/métodos , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo
10.
J Plant Physiol ; 255: 153251, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33129076

RESUMEN

Calmodulin (CaM) and calmodulin-like (CML) proteins are primary calcium (Ca2+) sensors and are involved in the regulation of plant development and stress responses by converting calcium signals into transcriptional responses, protein phosphorylation, or metabolic changes. However, the characterization and expression profiling of CaM/CML genes in Brassica napus remain limited. The present study reports that 25 BnaCaM and 168 BnaCML genes were identified in B. napus. The phylogenetics, gene structures, gene motifs, gene chromosomal locations, syntenic and Ka/Ks analysis, promoter cis-acting elements, and expression characteristics in various organs and under abiotic stress were evaluated. The phylogenetic results revealed a total of 11 subgroups, including one unique clade of CaMs distinct from CMLs. Most of group I (CaM), II, III, and X members are intron rich, while members from the other seven groups are intron-less. The majority of CaM/CML proteins have four EF-hands. Syntenic analysis showed that 91.3 % orthologous CaM/CML gene pairs between B. rapa and B. oleracea were retained as homologous gene pairs in B. napus. Ka/Ks analysis indicated that the majority of BnaCaM/CML experienced purifying selection. Expression analysis showed that BnaCaMs genes are highly and ubiquitously expressed in all of the organs and tissues examined, while distinct BnaCMLs are expressed specifically in particular organs and tissues. In total, 129 BnaCaM/CML were induced by abiotic stress and phytohormones. BnaCMLs from group IV, VI, VIII, and X were strongly induced by freezing treatment, but were not or just slightly induced by chilling treatment. The present study is the first to analyze the CaM/CML gene family in B. napus, which is useful for understanding the functions of the BnaCaM/CML in modulating plant responses to abiotic stress, especially freezing stress.


Asunto(s)
Brassica napus/genética , Brassica napus/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Brassica/genética , Brassica/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Filogenia , Estrés Fisiológico/fisiología
11.
BMC Genomics ; 21(1): 736, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33092535

RESUMEN

BACKGROUND: TIFY is a plant-specific protein family with a diversity of functions in plant development and responses to stress and hormones, which contains JASMONATE ZIM-domain (JAZ), TIFY, PPD and ZML subfamilies. Despite extensive studies of TIFY family in many other species, TIFY has not yet been characterized in Brassica napus. RESULTS: In this study, we identified 77, 36 and 39 TIFY family genes in the genome of B. napus, B. rapa and B. oleracea, respectively. Results of the phylogenetic analysis indicated the 170 TIFY proteins from Arabidopsis, B. napus, B. rapa and B. oleracea could be divided into 11 groups: seven JAZ groups, one PPD group, one TIFY group, and two ZIM/ZML groups. The molecular evolutionary analysis showed that TIFY genes were conserved in Brassicaceae species. Gene expression profiling and qRT-PCR revealed that different groups of BnaTIFY members have distinct spatiotemporal expression patterns in normal conditions or following treatment with different abiotic/biotic stresses and hormones. The BnaJAZ subfamily genes were predominantly expressed in roots and up-regulated by NaCl, PEG, freezing, methyl jasmonate (MeJA), salicylic acid (SA) and Sclerotinia sclerotiorum in leaves, suggesting that they have a vital role in hormone signaling to regulate multiple stress tolerance in B. napus. CONCLUSIONS: The extensive annotation and expression analysis of the BnaTIFY genes contributes to our understanding of the functions of these genes in multiple stress responses and phytohormone crosstalk in B. napus.


Asunto(s)
Brassica napus , Ascomicetos , Brassica napus/genética , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
BMC Genomics ; 21(1): 320, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32326904

RESUMEN

BACKGROUND: Strong artificial and natural selection causes the formation of highly conserved haplotypes that harbor agronomically important genes. GWAS combination with haplotype analysis has evolved as an effective method to dissect the genetic architecture of complex traits in crop species. RESULTS: We used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with oleic acid (C18:1) in rapeseed. Six haplotype regions were identified as significantly associated with oleic acid (C18:1) that mapped to chromosomes A02, A07, A08, C01, C02, and C03. Additionally, whole-genome sequencing of 50 rapeseed accessions revealed three genes (BnmtACP2-A02, BnABCI13-A02 and BnECI1-A02) in the A02 chromosome haplotype region and two genes (BnFAD8-C02 and BnSDP1-C02) in the C02 chromosome haplotype region that were closely linked to oleic acid content phenotypic variation. Moreover, the co-expression network analysis uncovered candidate genes from these two different haplotype regions with potential regulatory interrelationships with oleic acid content accumulation. CONCLUSIONS: Our results suggest that several candidate genes are closely linked, which provides us with an opportunity to develop functional haplotype markers for the improvement of the oleic acid content in rapeseed.


Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas/genética , Estudio de Asociación del Genoma Completo/métodos , Ácido Oléico/metabolismo , Brassica napus/clasificación , Brassica napus/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Ligamiento Genético , Haplotipos , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma/métodos
13.
Sci Rep ; 10(1): 4295, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152363

RESUMEN

Annexins (ANN) are a multigene, evolutionarily conserved family of calcium-dependent and phospholipid-binding proteins that play important roles in plant development and stress resistance. However, a systematic comprehensive analysis of ANN genes of Brassicaceae species (Brassica rapa, Brassica oleracea, and Brassica napus) has not yet been reported. In this study, we identified 13, 12, and 26 ANN genes in B. rapa, B. oleracea, and B. napus, respectively. About half of these genes were clustered on various chromosomes. Molecular evolutionary analysis showed that the ANN genes were highly conserved in Brassicaceae species. Transcriptome analysis showed that different group ANN members exhibited varied expression patterns in different tissues and under different (abiotic stress and hormones) treatments. Meanwhile, same group members from Arabidopsis thaliana, B. rapa, B. oleracea, and B. napus demonstrated conserved expression patterns in different tissues. The weighted gene coexpression network analysis (WGCNA) showed that BnaANN genes were induced by methyl jasmonate (MeJA) treatment and played important roles in jasmonate (JA) signaling and multiple stress response in B. napus.


Asunto(s)
Anexinas/metabolismo , Brassica/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Anexinas/genética , Brassica/clasificación , Brassica/genética , Brassica/metabolismo , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Brassica rapa/genética , Brassica rapa/crecimiento & desarrollo , Brassica rapa/metabolismo , Filogenia , Proteínas de Plantas/genética
14.
Sci Rep ; 9(1): 14911, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31624282

RESUMEN

Plants in temperate areas evolved vernalisation requirement to avoid pre-winter flowering. In Brassicaceae, a period of extended cold reduces the expression of the flowering inhibitor FLOWERING LOCUS C (FLC) and paves the way for the expression of downstream flowering regulators. As with all polyploid species of the Brassicaceae, the model allotetraploid Brassica napus (rapeseed, canola) is highly duplicated and carries 9 annotated copies of Bna.FLC. To investigate whether these multiple homeologs and paralogs have retained their original function in vernalisation or undergone subfunctionalisation, we compared the expression patterns of all 9 copies between vernalisation-dependent (biennial, winter type) and vernalisation-independent (annual, spring type) accessions, using RT-qPCR with copy-specific primers and RNAseq data from a diversity set. Our results show that only 3 copies - Bna.FLC.A03b, Bna.FLC.A10 and to some extent Bna.FLC.C02 - are differentially expressed between the two growth types, showing that expression of the other 6 copies does not correlate with growth type. One of those 6 copies, Bna.FLC.C03b, was not expressed at all, indicating a pseudogene, while three further copies, Bna.FLC.C03a and Bna.FLC.C09ab, did not respond to cold treatment. Sequence variation at the COOLAIR binding site of Bna.FLC.A10 was found to explain most of the variation in gene expression. However, we also found that Bna.FLC.A10 expression is not fully predictive of growth type.


Asunto(s)
Brassica napus/fisiología , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Aclimatación/genética , Alelos , Sitios de Unión/genética , Mapeo Cromosómico , Frío/efectos adversos , Duplicación de Gen , Genes de Plantas/genética , Mutación INDEL , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Poliploidía , Sitios de Carácter Cuantitativo , RNA-Seq , Estaciones del Año
15.
Genes (Basel) ; 10(5)2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121949

RESUMEN

Nitrate (NO3-) and ammonium (NH4+) are the main inorganic nitrogen (N) sources absorbed by oilseed rape, a plant that exhibits genotypic differences in N efficiency. In our previous study, the biomass, N accumulation, and root architecture of two oilseed rape cultivars, Xiangyou 15 (high N efficiency, denoted "15") and 814 (low N efficiency, denoted "814"), were inhibited under NH4+ nutrition, though both cultivars grew normally under NO3- nutrition. To gain insight into the underlying molecular mechanisms, transcriptomic changes were investigated in the roots of 15 and 814 plants subjected to nitrogen-free (control, CK), NO3- (NT), and NH4+ (AT) treatments at the seedling stage. A total of 14,355 differentially expressed genes (DEGs) were identified. Among the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway categories of these DEGs, carbohydrate metabolism, lipid metabolism, protein metabolism, and cell wall biogenesis were inhibited by AT treatment. Interestingly, DEGs such as N transporters, genes involved in N assimilation and CESA genes related to cellulose synthase were also mostly downregulated in the AT treatment group. This downregulation of genes related to crucial metabolic pathways resulted in inhibition of oilseed rape growth after AT treatment.


Asunto(s)
Brassica napus/genética , Nitratos/metabolismo , Transcriptoma/genética , Compuestos de Amonio/metabolismo , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Nitrógeno/metabolismo , Óxidos de Nitrógeno/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantones/genética
16.
Plant Sci ; 283: 157-164, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128685

RESUMEN

Combining ability is crucial for parent selection in crop hybrid breeding. Many studies have attempted to provide reliable and quick methods to identify genome regions in parental lines correlating with improved hybrid performance. The local haplotype patterns surrounding densely spaced DNA markers include a large amount of genetic information, and analysis of the relationships between haplotypes and hybrid performance can provide insight into the underlying genome regions which might contribute to enhancing combining ability. Here, we generated 24,403 single-copy, genome-wide SNP loci and calculated the general combining ability (GCA) of 950 hybrids from a diverse panel of 475 pollinators of spring-type canola inbred lines crossed with two testers for days to flowering (DTF) and seed glucosinolate content (GSL). We performed a genome-wide analysis of the haplotypes and detected eight and seven haplotype regions that were significantly associated with the GCA values for DTF and seed GSL, respectively. Additionally, two haplotype blocks containing orthologs of flowering time genes FLOWERING LOCUS T (FT) and FLOWERING LOCUS C (FLC) on chromosome A02 showed additive epistatic interactions influencing flowering time. Moreover, two homoeologous haplotype regions on chromosomes A02 and C02 corresponded to major quantitative trait loci (QTL) for GSL which showed additive effects related to reduction of seed GSL in F1 hybrids. Our study showed that haplotype analysis has the potential to substantially improve the efficiency of hybrid breeding programs.


Asunto(s)
Brassica napus/genética , Carácter Cuantitativo Heredable , Brassica napus/crecimiento & desarrollo , Mapeo Cromosómico , Flores/crecimiento & desarrollo , Genes de Plantas/genética , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Vigor Híbrido/genética , Desequilibrio de Ligamiento/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética
17.
J Integr Plant Biol ; 61(5): 611-623, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30183130

RESUMEN

Glucosinolates are amino acid-derived secondary metabolites that act as chemical defense agents against pests. However, the presence of high levels of glucosinolates severely diminishes the nutritional value of seed meals made from rapeseed (Brassica napus L.). To identify the loci affecting seed glucosinolate content (SGC), we conducted genome-wide resequencing in a population of 307 diverse B. napus accessions from the three B. napus ecotype groups, namely, spring, winter, and semi-winter. These resequencing data were used for a genome-wide association study (GWAS) to identify the loci affecting SGC. In the three ecotype groups, four common and four ecotype-specific haplotype blocks (HBs) were significantly associated with SGC. To identify candidate genes controlling SGC, transcriptome analysis was carried out in 36 accessions showing extreme SGC values. Analyses of haplotypes, genomic variation, and candidate gene expression pointed to five and three candidate genes in the common and spring group-specific HBs, respectively. Our expression analyses demonstrated that additive effects of the three candidate genes in the spring group-specific HB play important roles in the SGC of B. napus.


Asunto(s)
Brassica napus/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Glucosinolatos/metabolismo , Semillas/genética , Semillas/metabolismo , Brassica napus/genética , Genoma de Planta/genética , Desequilibrio de Ligamiento/genética , Sitios de Carácter Cuantitativo
18.
Sci Rep ; 8(1): 13153, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177750

RESUMEN

The ongoing global intensification of wheat production will likely be accompanied by a rising pressure of Fusarium diseases. While utmost attention was given to Fusarium head blight (FHB) belowground plant infections of the pathogen have largely been ignored. The current knowledge about the impact of soil borne Fusarium infection on plant performance and the underlying genetic mechanisms for resistance remain very limited. Here, we present the first large-scale investigation of Fusarium root rot (FRR) resistance using a diverse panel of 215 international wheat lines. We obtained data for a total of 21 resistance-related traits, including large-scale Real-time PCR experiments to quantify fungal spread. Association mapping and subsequent haplotype analyses discovered a number of highly conserved genomic regions associated with resistance, and revealed a significant effect of allele stacking on the stembase discoloration. Resistance alleles were accumulated in European winter wheat germplasm, implying indirect prior selection for improved FRR resistance in elite breeding programs. Our results give first insights into the genetic basis of FRR resistance in wheat and demonstrate how molecular parameters can successfully be explored in genomic prediction. Ongoing work will help to further improve our understanding of the complex interactions of genetic factors influencing FRR resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Fusarium/patogenicidad , Genoma de Planta/inmunología , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Mapeo Cromosómico , Color , Fusarium/fisiología , Haplotipos , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Triticum/inmunología , Triticum/microbiología
19.
Plant Genome ; 11(2)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30025015

RESUMEN

Genomic selection (GS) has revolutionized breeding for quantitative traits in plants, offering potential to optimize resource allocation in breeding programs and increase genetic gain per unit of time. Modern high-density single nucleotide polymorphism (SNP) arrays comprising up to several hundred thousand markers provide a user-friendly technology to characterize the genetic constitution of whole populations and for implementing GS in breeding programs. However, GS does not build upon detailed genotype profiling facilitated by maximum marker density. With extensive genome-wide linkage disequilibrium (LD) being a common characteristic of breeding pools, fewer representative markers from available high-density genotyping platforms could be sufficient to capture the association between a genomic region and a phenotypic trait. To examine the effects of reduced marker density on genomic prediction accuracy, we collected data on three traits across 2 yr in a panel of 203 homozygous Chinese semiwinter rapeseed ( L.) inbred lines, broadly encompassing allelic variability in the Asian genepool. We investigated two approaches to selecting subsets of markers: a trait-dependent strategy based on genome-wide association study (GWAS) significance thresholds and a trait-independent method to detect representative tag SNPs. Prediction accuracies were evaluated using cross-validation with ridge-regression best linear unbiased predictions (rrBLUP). With semiwinter rapeseed as a model species, we demonstrate that low-density marker sets comprising a few hundred to a few thousand markers enable high prediction accuracies in breeding populations with strong LD comparable to those achieved with high-density arrays. Our results are valuable for facilitating routine application of cost-efficient GS in breeding programs.


Asunto(s)
Brassica napus/genética , Marcadores Genéticos , Fitomejoramiento/métodos , China , Pool de Genes , Genoma de Planta , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
20.
Theor Appl Genet ; 131(2): 299-317, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29080901

RESUMEN

KEY MESSAGE: Genomic prediction using the Brassica 60 k genotyping array is efficient in oilseed rape hybrids. Prediction accuracy is more dependent on trait complexity than on the prediction model. In oilseed rape breeding programs, performance prediction of parental combinations is of fundamental importance. Due to the phenomenon of heterosis, per se performance is not a reliable indicator for F1-hybrid performance, and selection of well-paired parents requires the testing of large quantities of hybrid combinations in extensive field trials. However, the number of potential hybrids, in general, dramatically exceeds breeding capacity and budget. Integration of genomic selection (GS) could substantially increase the number of potential combinations that can be evaluated. GS models can be used to predict the performance of untested individuals based only on their genotypic profiles, using marker effects previously predicted in a training population. This allows for a preselection of promising genotypes, enabling a more efficient allocation of resources. In this study, we evaluated the usefulness of the Illumina Brassica 60 k SNP array for genomic prediction and compared three alternative approaches based on a homoscedastic ridge regression BLUP and three Bayesian prediction models that considered general and specific combining ability (GCA and SCA, respectively). A total of 448 hybrids were produced in a commercial breeding program from unbalanced crosses between 220 paternal doubled haploid lines and five male-sterile testers. Predictive ability was evaluated for seven agronomic traits. We demonstrate that the Brassica 60 k genotyping array is an adequate and highly valuable platform to implement genomic prediction of hybrid performance in oilseed rape. Furthermore, we present first insights into the application of established statistical models for prediction of important agronomical traits with contrasting patterns of polygenic control.


Asunto(s)
Brassica napus/genética , Vigor Híbrido , Modelos Genéticos , Fitomejoramiento , Cruzamientos Genéticos , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...