Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 323: 121252, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764374

RESUMEN

Microplastics (MPs) are widely distributed throughout the environment. Upon ingesting MPs, the pollutants that they carry are then desorbed into organisms. This results in the accumulation of various chemicals within the organism. This study systematically examined the mechanism of antibiotic desorption using tire wear particles (TWP) as a carrier of antibiotics in simulated human gastrointestinal fluid and fish intestinal fluid. The findings of this study revealed the formation of cracks, pores, and depressions on the surface of photoaged TWP in an aquatic environment, as well as additional adsorption sites that are more favorable for the attachment of pollutants. Furthermore, the simulated human gastric fluid had a higher desorption rate than that of the fish intestinal fluid. The competition for TWP adsorption sites in the gastrointestinal fluid and the potential dissolution of antibiotics were the primary drivers of the increase in the desorption rate. The desorption rate in the simulated human gastrointestinal fluid was greater than that in the simulated fish intestinal fluid due to the composition of the gastrointestinal fluid. However, the carrying of pollutants by MPs poses a potential threat to human health. This study improves our understanding of TWP toxicity and has significant implications for the development of risk assessments.


Asunto(s)
Antibacterianos , Microplásticos , Contaminantes Químicos del Agua , Animales , Humanos , Adsorción , Antibacterianos/química , Peces , Microplásticos/química , Contaminantes Químicos del Agua/química , Tracto Gastrointestinal
2.
Environ Sci Pollut Res Int ; 30(13): 36619-36630, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562965

RESUMEN

Microplastics (MPs) are widely present in aqueous environments and aged by natural components of complex water environments, such as salinity (SI) and dissolved organic matter (DOM). However, the effects of multicondition aging on the physicochemical properties and environmental behavior of MPs have not been completely investigated. In this study, the degradable MP polybutylene succinate (PBS) was used to investigate the environmental behavior of sulfamethoxazole (SMZ) and was compared with polypropylene (PP). The results showed that the single-factor conditions of DOM and SI, particularly DOM, promoted the aging process of MPs more significantly, especially for PBS. The degrees of MP aging under multiple conditions were lower than those under single-factor conditions. Compared with PP, PBS had greater specific surface area, crystallinity, and hydrophilicity and thus a stronger SMZ adsorption capacity. The adsorption behavior of MPs fitted well with the pseudo-second-order kinetic and Freundlich isotherm models, indicating multilayer adsorption. Compared with PP, PBS showed relatively a higher adsorption capacity, for example, for MPs aged under DOM conditions, the adsorption of SMZ by PBS was up to 5.74 mg/g, whereas that for PP was only 3.41 mg/g. The desorption experiments showed that the desorption amount of SMZ on MPs in the simulated intestinal fluid was greater than that in Milli-Q water. In addition, both the original PBS and the aged PBS had stronger desorption capacities than that of PP. The desorption quantity of PBS was 1.23-1.84 times greater than PP, whereas the desorption rates were not significantly different. This experiment provides a theoretical basis for assessing the ecological risks of degradable MPs in complex water conditions.


Asunto(s)
Polipropilenos , Contaminantes Químicos del Agua , Plásticos/química , Agua , Adsorción , Antibacterianos , Microplásticos/química , Materia Orgánica Disuelta , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Pollut Res Int ; 30(4): 10484-10494, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36076135

RESUMEN

Many aging experiments on microplastics (MPs) have been carried out using UV radiation or strong oxidants. Little attention has been paid to the role of water environmental factors such as dissolved organic matter (DOM). In this study, the role of fulvic acid (FA), the main component of DOM, in the UV-aging process of MPs was explored. MPs aged under UV, and UV along with 0.5 mg/L and 2 mg/L FA, were selected as subjects. The results showed that (1) FA accelerated the aging process of polyethylene (PE). PE aged with FA had a larger specific area (SBET), with more holes and cracks on the surface. (2) FA enhanced the adsorption capacity of PE. The TC adsorption quantities of 0, 0.5, and 2 mg/L FA-aged PE were 1.100, 1.447, and 1.812 mg/L, respectively. (3) The quantity of TC desorbed by PE increased, whereas the desorption rate decreased as the FA concentration increased. The desorption rates of TC at 0, 0.5, and 2 mg/L FA-aged PE were 25.16%, 22.05%, and 19.52% in water, and 72.10%, 70.36%, and 59.51% in simulated intestinal fluid. This study explored the role of FA in the aging process of MPs. Moreover, research on the aging mechanism of MPs is enriched.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Anciano , Plásticos , Adsorción , Polietileno , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...