Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38083739

RESUMEN

A lab-on-a-chip multichannel sensing platform for biomedical analysis based on optical silicon nitride (SiNx) microring-resonators (MRR) was established. The resonators were surface functionalized and finally combined with a microfluidic chamber for validation using an avidin-biotin ligand-binding assay. The results with a limit of detection (LOD) of 2.3∙10-5 and a mean intra-assay coefficient of variation (CV) of ±10.0 %, also under consideration of FDA guidelines, show promising future applicability for a wide variety of targets in the field of outpatient medical diagnostics and life science.Clinical Relevance- Biomarkers play a crucial role in physiological processes of the human body. To enable instantaneous and decentralized analysis of these markers, systems are needed that can be used in a laboratory-independent environment with minimal amounts of biofluid. An example is the utilization of such systems for neonates or infants.


Asunto(s)
Técnicas Biosensibles , Óptica y Fotónica , Recién Nacido , Humanos , Técnicas Biosensibles/métodos , Fotones , Compuestos de Silicona
2.
Opt Express ; 30(25): 44701-44716, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522889

RESUMEN

For wireless networks beyond 5G, directivity and reconfigurability of antennas are highly relevant. Therefore, we propose a linear antenna array based on photodiodes operating at 300 GHz, and an optical phased array based on polymer waveguides to orchestrate the antennas. Due to its low thermal conductivity and high thermo-optical coefficient, the polymer chip enables highly efficient and crosstalk-free phase shifting. With these, we demonstrate purely photonic-controlled beam steering across 20°. Compared to a single emitter, the 3-dB beam width is reduced by 8.5° to 22.5° and the output power is >10 dB higher. Employing Snell's law for coupling into air, we can precisely predict the radiation patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...